期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
随机降维映射稀疏表示的电能质量扰动多分类研究 被引量:18
1
作者 沈跃 刘国海 刘慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第6期1371-1376,共6页
提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解... 提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解决方案求取扰动信号测试样本的稀疏解,由冗余误差最小值确定目标归属类,实现对电能质量扰动的稀疏表示多分类识别。研究表明随机矩阵降维映射特征提取不依赖于电能扰动样本特性,构造简单,运算快速,具有普适性;稀疏表示分类法与支持向量机相比无需组合多个二分类器来实现多分类器。仿真和实验结果表明该方法能有效提取各种电能扰动特征,抗噪声鲁棒性好,在信噪比20 dB以上的噪声环境中电能质量扰动分类准确率达95%以上。 展开更多
关键词 电能质量 扰动分类 压缩感知 随机矩阵 降维映射 稀疏表示分类 最小l1范数
下载PDF
Theory of Compressive Sensing via l1-Minimization:a Non-RIP Analysis and Extensions 被引量:12
2
作者 Yin Zhang 《Journal of the Operations Research Society of China》 EI 2013年第1期79-105,共27页
Compressive sensing(CS)is an emerging methodology in computational signal processing that has recently attracted intensive research activities.At present,the basic CS theory includes recoverability and stability:the f... Compressive sensing(CS)is an emerging methodology in computational signal processing that has recently attracted intensive research activities.At present,the basic CS theory includes recoverability and stability:the former quantifies the central fact that a sparse signal of length n can be exactly recovered from far fewer than n measurements via l1-minimization or other recovery techniques,while the latter specifies the stability of a recovery technique in the presence of measurement errors and inexact sparsity.So far,most analyses in CS rely heavily on the Restricted Isometry Property(RIP)for matrices.In this paper,we present an alternative,non-RIP analysis for CS via l1-minimization.Our purpose is three-fold:(a)to introduce an elementary and RIP-free treatment of the basic CS theory;(b)to extend the current recoverability and stability results so that prior knowledge can be utilized to enhance recovery via l1-minimization;and(c)to substantiate a property called uniform recoverability of l1-minimization;that is,for almost all random measurement matrices recoverability is asymptotically identical.With the aid of two classic results,the non-RIP approach enables us to quickly derive from scratch all basic results for the extended theory. 展开更多
关键词 Compressive sensing l1-minimization Non-RIP analysis Recoverability and stability Prior information Uniform recoverability
原文传递
基于稀疏表示的多标记学习算法 被引量:5
3
作者 宋相法 焦李成 《模式识别与人工智能》 EI CSCD 北大核心 2012年第1期124-129,共6页
为解决多标记数据的分类问题,提出基于稀疏表示的多标记学习算法.首先将待分类样本表示为训练样本集上的稀疏线性组合,基于l1-最小化方法求得最稀疏的系数解.然后利用稀疏系数的判别信息提出一个计算待分类样本对各标记的隶属度的方法.... 为解决多标记数据的分类问题,提出基于稀疏表示的多标记学习算法.首先将待分类样本表示为训练样本集上的稀疏线性组合,基于l1-最小化方法求得最稀疏的系数解.然后利用稀疏系数的判别信息提出一个计算待分类样本对各标记的隶属度的方法.最后根据隶属度对标记进行排序,进而完成分类.在Yeast基因功能分析、自然场景分类和web页面分类上的实验表明,该算法能够有效解决多标记数据的分类问题,与其它方法相比取得更好的结果. 展开更多
关键词 机器学习 多标记学习 稀疏表示 压缩感知 l1-最小化
原文传递
基于压缩传感的手写字符识别方法 被引量:5
4
作者 刘长红 杨扬 陈勇 《计算机应用》 CSCD 北大核心 2009年第8期2080-2082,共3页
基于新出现的压缩传感理论,提出了一种鲁棒的手写字符识别方法,能很好地对含有噪声的字符进行识别。该方法通过对测试字符进行稀疏表示,采用l1范数最小化算法求得最稀疏的系数解,所获得的系数具有明显的类别信息,从而易于对测试字符进... 基于新出现的压缩传感理论,提出了一种鲁棒的手写字符识别方法,能很好地对含有噪声的字符进行识别。该方法通过对测试字符进行稀疏表示,采用l1范数最小化算法求得最稀疏的系数解,所获得的系数具有明显的类别信息,从而易于对测试字符进行分类。实验结果表明,该方法具有很好的噪声鲁棒性。 展开更多
关键词 手写字符识别 压缩传感 稀疏表示 l1最小化
下载PDF
Numerical Studies of the Generalized <i>l</i><sub>1</sub>Greedy Algorithm for Sparse Signals
5
作者 Fangjun Arroyo Edward Arroyo +2 位作者 Xiezhang Li Jiehua Zhu Jiehua Zhu 《Advances in Computed Tomography》 2013年第4期132-139,共8页
The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized tomography in the compressed sensing framework via total variation minimization. Experimental results ... The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized tomography in the compressed sensing framework via total variation minimization. Experimental results showed that this algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in reconstructing these medical images. In this paper the effectiveness of the generalized l1 greedy algorithm in finding random sparse signals from underdetermined linear systems is investigated. A series of numerical experiments demonstrate that the generalized l1 greedy algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in the successful recovery of randomly generated Gaussian sparse signals from data generated by Gaussian random matrices. In particular, the generalized l1 greedy algorithm performs extraordinarily well in recovering random sparse signals with nonzero small entries. The stability of the generalized l1 greedy algorithm with respect to its parameters and the impact of noise on the recovery of Gaussian sparse signals are also studied. 展开更多
关键词 Compressed Sensing Gaussian Sparse Signals l1-minimization Reweighted l1-minimization l1 GREEDY AlGORITHM Generalized l1 GREEDY AlGORITHM
下载PDF
基于自适应线性回归的头部姿态计算 被引量:3
6
作者 郭知智 周前祥 柳忠起 《计算机应用研究》 CSCD 北大核心 2016年第10期3181-3184,共4页
减少训练样本数量和不使用任何硬件参数是目前头部姿态计算领域的最大挑战。针对这些挑战,提出一种仅需要54个训练样本的头部姿态估计方法。其基本思想是将关键点间的归一化距离作为输入特征向量,并利用一阶范数最小化稀疏地挑选出一组... 减少训练样本数量和不使用任何硬件参数是目前头部姿态计算领域的最大挑战。针对这些挑战,提出一种仅需要54个训练样本的头部姿态估计方法。其基本思想是将关键点间的归一化距离作为输入特征向量,并利用一阶范数最小化稀疏地挑选出一组图片集,这些图片对应头部姿态的线性组合为测试图片的头部姿态。实验表明,该方法在不知道任何硬件参数的条件下,可以实现单方向上3°的头部姿态估计。此外,该方法也适用于不均匀光照条件和头部转动较大的情况,且计算精度高于其他相关方法。 展开更多
关键词 头部姿态 自适应线性回归 特征向量 一阶范数最小化 训练样本
下载PDF
基于压缩感知的阅卷系统手写汉字识别算法 被引量:2
7
作者 郑昊辰 姜维 《电子科技》 2018年第3期75-77,80,共4页
针对阅卷系统中手写汉字识别率和识别精度低的问题,文中提出一种基于压缩感知理论的阅卷系统手写汉字识别算法。该算法首先对阅卷系统手写汉字图像进行随机采样得到其特征;然后对其进行稀疏表示,并最小化其l1范数以得到样本的稀疏解;最... 针对阅卷系统中手写汉字识别率和识别精度低的问题,文中提出一种基于压缩感知理论的阅卷系统手写汉字识别算法。该算法首先对阅卷系统手写汉字图像进行随机采样得到其特征;然后对其进行稀疏表示,并最小化其l1范数以得到样本的稀疏解;最后利用该稀疏解的系数判别测试样本的类别。该方法用对信号的随机采样替代了传统的特征提取方法,简化了算法的实现过程,同时用现有的训练样本组成训练字典,避免了复杂的训练过程。该算法在手写汉字数据库ETL9B上的识别率达到99.1%。 展开更多
关键词 手写汉字识别 压缩感知 稀疏表示 l1范数最小化 观测矩阵 信号重构
下载PDF
基于粒子滤波和稀疏表示的视频目标跟踪 被引量:2
8
作者 杨晓玲 《信息技术》 2015年第6期103-108,共6页
文中将视频目标跟踪看成在粒子滤波框架下的稀疏表示问题,提出了具鲁棒性的视觉跟踪方法。在跟踪过程中,将目标的先验知识和目标状态及其观测结果联系起来构造贝叶斯概率模型,根据基本粒子滤波算法对目标位置进行估计。候选目标通过目... 文中将视频目标跟踪看成在粒子滤波框架下的稀疏表示问题,提出了具鲁棒性的视觉跟踪方法。在跟踪过程中,将目标的先验知识和目标状态及其观测结果联系起来构造贝叶斯概率模型,根据基本粒子滤波算法对目标位置进行估计。候选目标通过目标模板和琐碎模板稀疏表示,用l1范数稀疏正则化算法求解稀疏问题,选取具有最小残差的候选目标为跟踪结果。通过动态更新模板和非负性约束两种策略,使算法在目标遮挡、噪声、形变等各种干扰因素下,均达到了很好的跟踪性能。 展开更多
关键词 目标跟踪 稀疏表示 粒子滤波 l1最小化
下载PDF
基于GPU的高效并行l_1最小化算法 被引量:2
9
作者 高家全 李泽界 《浙江工业大学学报》 CAS 北大核心 2016年第5期495-500,共6页
多数l_1最小化算法主要由稠密矩阵矢量乘(如Ax和A^Tx)和矢量运算组成.为使其适应大数据环境下的性能需求,基于GPU,利用其新的特征,提出了两个新颖的基于GPU的并行矩阵矢量乘.这两个算法实现了全局内存的合并访问,对任意给定矩阵,通过所... 多数l_1最小化算法主要由稠密矩阵矢量乘(如Ax和A^Tx)和矢量运算组成.为使其适应大数据环境下的性能需求,基于GPU,利用其新的特征,提出了两个新颖的基于GPU的并行矩阵矢量乘.这两个算法实现了全局内存的合并访问,对任意给定矩阵,通过所使用的自适应分配线程数或warp数的策略,增加了鲁棒性.基于这两个算法,并以两个流行的l_1最小化算法为例:快速迭代收缩阈值算法(FISTA)和增广拉格朗日乘子法(ALM),提出了两个高效基于GPU的并行l_1最小化算法.实验结果验证了提出的算法是高效的,并有良好的性能. 展开更多
关键词 l1最小化 GPU 矩阵矢量乘 FISTA AlM
下载PDF
冗余字典的扰动压缩数据分离 被引量:2
10
作者 刘春燕 张静 王建军 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第9期150-156,共7页
在冗余字典满足相互一致性条件和完全扰动矩阵满足限制性同构条件下,基于l1-极小化方法,对压缩数据分离问题进行了研究,完美地重构了原始信号.
关键词 压缩数据分离 l1-极小化 相互一致性 限制性等容性质 紧框架 完全扰动
下载PDF
一个求解绝对值方程组稀疏解问题的不动点算法 被引量:1
11
作者 王鹏 任天 《首都师范大学学报(自然科学版)》 2018年第4期22-26,共5页
本文提出基于prox算子不动点算法(fixed-point algorithm)求解NP难的绝对值方程组Ax-x=b的最稀疏解.该算法首先将问题松弛为l1范数最小化问题,利用外罚函数法进一步松弛为一个无约束优化问题,其次求解近似后的无约束优化问题.
关键词 l1范数最小化 稀疏解 prox算子 绝对值方程组
下载PDF
非负l^1图及其在谱聚类中的应用
12
作者 史加荣 杨威 魏宗田 《计算机工程与应用》 CSCD 北大核心 2011年第27期6-7,23,共3页
信息图的构造对许多机器学习任务来说是至关重要的。基于稀疏表示理论,提出了一种有向非负l1图。在构造此图的过程中,先将每个样例表示成其他样例的非负线性组合,再通过求解l1最小化问题来同时获得近邻样例和对应的相似度。最后将基于非... 信息图的构造对许多机器学习任务来说是至关重要的。基于稀疏表示理论,提出了一种有向非负l1图。在构造此图的过程中,先将每个样例表示成其他样例的非负线性组合,再通过求解l1最小化问题来同时获得近邻样例和对应的相似度。最后将基于非负l1图的谱聚类方法应用于手写字符的聚类问题。与基于l1图的谱聚类方法相比,所提方法具有较好的聚类性能和较低的计算复杂度。 展开更多
关键词 非负l1 谱聚类 l1最小化 手写字符聚类
下载PDF
压缩感知邻域中的带限制性等距常数(英文)
13
作者 章瑞 李松 《数学进展》 CSCD 北大核心 2018年第6期801-812,共12页
众所周知,带限制性等距常数是压缩感知领域中的核心概念.在压缩感知理论发展的十几年历史中,几乎所有的重要理论结果都与这个概念密切相关.此文主要是总结近十余年来带限制性等距常数的若干重要结果,特别是最佳上界的发现.我们首先表明... 众所周知,带限制性等距常数是压缩感知领域中的核心概念.在压缩感知理论发展的十几年历史中,几乎所有的重要理论结果都与这个概念密切相关.此文主要是总结近十余年来带限制性等距常数的若干重要结果,特别是最佳上界的发现.我们首先表明许多具有最少行数的随机矩阵满足这个性质,而一些确定性矩阵也满足这个性质.但是与随机矩阵相比,确定性矩阵的行数要明显多.其次,我们给出了刻画l_1优化模型范数最小解与最稀疏解等价性的最佳带限制性等距常数,对于l_p(0<p <1)优化模型也得到了类似结果.最后,我们延拓这些结果到低秩矩阵恢复以及在字典表示下具有稀疏信号恢复的情形. 展开更多
关键词 压缩感知 带限制性等距常数 l1优化 lp优化
原文传递
Efficient Concurrent L1-Minimization Solvers on GPUs 被引量:1
14
作者 Xinyue Chu Jiaquan Gao Bo Sheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第9期305-320,共16页
Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp impleme... Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp implementation of the matrix-vector multiplication(Ax)and a novel self-adaptive thread implementation of the matrix-vector multiplication(ATx),respectively,on the GPU.The vector-operation and inner-product decision trees are adopted to choose the optimal vector-operation and inner-product kernels for vectors of any size.Second,based on the above proposed kernels,the iterative shrinkage-thresholding algorithm is utilized to present two concurrent L1-min solvers from the perspective of the streams and the thread blocks on a GPU,and optimize their performance by using the new features of GPU such as the shuffle instruction and the read-only data cache.Finally,we design a concurrent L1-min solver on multiple GPUs.The experimental results have validated the high effectiveness and good performance of our proposed methods. 展开更多
关键词 Concurrent l1-minimization problem dense matrix-vector multiplication fast iterative shrinkage-thresholding algorithm CUDA GPUS
下载PDF
基于最小l_1稀疏图表学习分类的图像识别方法研究
15
作者 蒋业文 于昕梅 《电路与系统学报》 北大核心 2013年第1期133-136,204,共5页
利用信号的稀疏性建立图像分类处理模型是图像识别技术的新应用。通过分析最小l1范数稀疏性的原理,本文导出了一种最小l1范数稀疏性十字"花束"多面体实现模型,并在此基础上,构造了一种l1图表学习分类算法。通过与几种常用的... 利用信号的稀疏性建立图像分类处理模型是图像识别技术的新应用。通过分析最小l1范数稀疏性的原理,本文导出了一种最小l1范数稀疏性十字"花束"多面体实现模型,并在此基础上,构造了一种l1图表学习分类算法。通过与几种常用的图像分类算法比较,实验结果说明,本文提出的l1图表学习分类算法具有更高的分类精度和有效性。 展开更多
关键词 最小l1 稀疏性 图像分类 图表
下载PDF
基于压缩感知的手写汉字识别研究
16
作者 张军 张曼雪 《西安航空学院学报》 2017年第5期47-50,共4页
基于压缩感知理论,提出一种手写汉字识别的算法。该算法首先对手写汉字图像进行随机采样得到其特征,然后对其进行稀疏表示,并最小化其l1范数得到样本的稀疏解,最后利用该稀疏解的系数判别测试样本的类别。
关键词 手写文字识别 压缩感知 稀疏表示 l1范数最小化数
下载PDF
基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别 被引量:10
17
作者 殷飞 焦李成 《模式识别与人工智能》 EI CSCD 北大核心 2012年第1期89-95,共7页
针对含有残缺图像的遥感图像目标识别问题,提出一种基于旋转扩展和稀疏表示的目标识别方法.首先对训练集进行旋转扩展,使得测试图像能近似用训练集稀疏表示,然后通过求解一个l1范数最小化问题得到测试图像相对于训练集的一个稀疏表示,... 针对含有残缺图像的遥感图像目标识别问题,提出一种基于旋转扩展和稀疏表示的目标识别方法.首先对训练集进行旋转扩展,使得测试图像能近似用训练集稀疏表示,然后通过求解一个l1范数最小化问题得到测试图像相对于训练集的一个稀疏表示,进而根据不同类对应的稀疏表示对测试图像的近似程度进行识别.与代表性的方法进行比较,实验结果与分析表明,该方法识别率优于已有方法,对残缺图像的识别有较好的鲁棒性,且在小样本、低采样率情况下也能保持较好的识别性能. 展开更多
关键词 遥感目标识别 残缺图像 稀疏表示 旋转扩展 l1范数最小化
原文传递
一种改进的压缩感知信号重构算法 被引量:10
18
作者 李少东 杨军 胡国旗 《信号处理》 CSCD 北大核心 2012年第5期744-749,共6页
针对支撑集未知且变化时的稀疏信号的重构问题,本文基于卡尔曼滤波思想,结合压缩感知算法,给出了一种改进的卡尔曼-压缩感知(Modified Kalman Filter Compressive Sensing,MKFCS)信号重构算法,该算法首先利用Kalman滤波获得信号残差的... 针对支撑集未知且变化时的稀疏信号的重构问题,本文基于卡尔曼滤波思想,结合压缩感知算法,给出了一种改进的卡尔曼-压缩感知(Modified Kalman Filter Compressive Sensing,MKFCS)信号重构算法,该算法首先利用Kalman滤波获得信号残差的有效估计,然后根据残差变突情况,用改进的CS算法估计突变位置以确定信号的新的支撑集,最后用最小二乘方法重构信号,从而自适应的实现支撑集未知且变化的稀疏信号的重构。最后对所改进的通过重构精度、重构误差、稳健性等方面进行了仿真,仿真结果表明所提算法重构信号具有需要量测个数少、重构精度高、鲁棒性强等特点。 展开更多
关键词 压缩感知 卡尔曼滤波 稀疏信号重构 最小l1范数
下载PDF
基于快速l_1算法和LBP算法的木材缺陷识别 被引量:10
19
作者 熊伟俊 杨绪兵 +1 位作者 云挺 朱正礼 《数据采集与处理》 CSCD 北大核心 2017年第6期1223-1231,共9页
快速l1最小化算法是一种关于求解稀疏矩阵的算法,相对于传统的主成分分析l2范数,l1范数只需要计算图像主要特征的稀疏矩阵,对噪声和异常项具有更好的鲁棒性,且在木材识别领域使用较少。局部二元模式(Local binary pattern,LBP)是一种描... 快速l1最小化算法是一种关于求解稀疏矩阵的算法,相对于传统的主成分分析l2范数,l1范数只需要计算图像主要特征的稀疏矩阵,对噪声和异常项具有更好的鲁棒性,且在木材识别领域使用较少。局部二元模式(Local binary pattern,LBP)是一种描述灰度范围纹理的算法,对于图像特征的描述有显著的效果。本文利用LBP提取不同木材截面RGB图像三层纹理的特征,用l1算法对特征矩阵进行快速、准确的匹配,检测出是否有缺陷,同时通过图像分块定位缺陷的位置坐标。实验表明快速l1算法结合LBP算子对木材缺陷定位正确率达到0.931。 展开更多
关键词 快速l1最小化算法 局部二值模式 识别算法 木材缺陷
下载PDF
基于加权L_1范数的CS-DOA算法 被引量:5
20
作者 刘福来 彭泸 +1 位作者 汪晋宽 杜瑞燕 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期654-657,共4页
针对基于L1范数约束的压缩感知理论的恢复算法出现虚假目标,恶化DOA估计性能的问题,提出了一种基于加权L1范数的CS-DOA估计算法.该算法利用噪声子空间与信号子空间的正交性,构造了一个加权矩阵,然后对L1范数约束模型进行加权.通过此加... 针对基于L1范数约束的压缩感知理论的恢复算法出现虚假目标,恶化DOA估计性能的问题,提出了一种基于加权L1范数的CS-DOA估计算法.该算法利用噪声子空间与信号子空间的正交性,构造了一个加权矩阵,然后对L1范数约束模型进行加权.通过此加权处理,该算法能够使恢复的系数向量具有更好的稀疏性,并能有效地抑制伪峰,从而获得更精确的DOA估计.仿真结果验证了算法的有效性. 展开更多
关键词 波达方向估计 压缩感知 奇异值分解 加权矩阵 l1 范数最小化
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部