Jet measurement is an ideal probe to explore the properties of the hot dense matter created in ultra- relativistic heavy-ion collisions. Recent results at the LHC show that large angle radiation is non-negligible, but...Jet measurement is an ideal probe to explore the properties of the hot dense matter created in ultra- relativistic heavy-ion collisions. Recent results at the LHC show that large angle radiation is non-negligible, but the mechanisms and phenomenology of large angle radiation are still unclear and hotly debated. Considering the coexistence and competition of different physics mechanisms qualitatively, it is assumed that the radiation angle is enhanced randomly over a wide range based on the collinear approximation. Its effects on di-jet momentum imbalance, jet fragmentation function and jet shape are studied in pp collisions at 7 TeV. The results show that di-jet asymmetry is insensitive to large angle radiation, while jet shape and jet fragmentation functions are more sensitive and could explain experimental data well. We conclude that de-collimated radiation cannot be ignored for soft jets, and there is a contribution from large angle radiation (Ф 〉 0.7) of about 8%, which is significant for jet intrinsic structure measurement at PT,jeT 〈80 GeV/c.展开更多
在相对论重离子碰撞中,整体喷注作为研究解禁闭的夸克胶子等离子体的重要探针近年来已被广泛研究。本工作基于多相输运模型(A Multi-Phase Transport model,AMPT),研究了在质心系能量为2.76 TeV的铅核-铅核碰撞中的双喷注不对称、喷注...在相对论重离子碰撞中,整体喷注作为研究解禁闭的夸克胶子等离子体的重要探针近年来已被广泛研究。本工作基于多相输运模型(A Multi-Phase Transport model,AMPT),研究了在质心系能量为2.76 TeV的铅核-铅核碰撞中的双喷注不对称、喷注的碎裂函数和喷注形状三方面的内容。数值模拟结果表明,在喷注与部分子物质的强相互作用中,喷注会有明显的能量损失。末态双喷注不对称是由初态不对称度和部分子喷注能损的共同作用导致的;喷注的碎裂函数可以分解为碎裂强子化和组合强子化两部分;相比于领头喷注,由于次领头喷注能量损失更大,所以导致次领头喷注的形状改变更大一些。展开更多
To investigate the controlling method of interior ballistic stability of bulk-loaded propellant guns,the combustion-gas generator and cylindrical stepped-wall chamber are designed aiming at the injection processes of ...To investigate the controlling method of interior ballistic stability of bulk-loaded propellant guns,the combustion-gas generator and cylindrical stepped-wall chamber are designed aiming at the injection processes of combustion-gases in liquid.The expansion courses of Taylor cavities and the turbulent mixing characteristic of gaseliquid are recorded by means of high speed photographic system.Based on the experiment,three-dimensional unsteady model on the interaction of gas and liquid is established to simulate expansion characteristics of twin combustion-gas jets in liquid under different nozzle diameters.The distribution regularities of characteristic parameter in jet field are obtained and analyzed.The results show the pressure,velocity and temperature distributions under different nozzle diameters are basically the same at the initial time.As time goes on,these characteristic parameters under different nozzle diameters have large differences.展开更多
Jet shape measurements are employed to explore the microscopic evolution mechanisms of parton-medium interaction in ultra-relativistic heavy-ion collisions. In this study, jet shape modifications are quantified in ter...Jet shape measurements are employed to explore the microscopic evolution mechanisms of parton-medium interaction in ultra-relativistic heavy-ion collisions. In this study, jet shape modifications are quantified in terms of the fragmentation function F(z), relative momentum p_T^(rel), density of charged particles p(r), jet angularity girth, jet momentum dispersion p_T^(disp),and LeS ub for proton-proton(pp) collisions at 0.9, 2.76. 5.02, 7,and 13 TeV, as well as for lead-lead collisions at 2.76 TeV and 5.02 TeV by JEWEL. A differential jet shape parameter Dgirth is proposed and studied at a smaller jet radius r < 0.3. The results indicate that the medium has the dominant effect on jet shape modification, which also has a weak dependence on the center-of-mass energy. Jet fragmentation is enhanced significantly at very low z < 0.02, and fragmented jet constituents are linearly spread to larger jet-radii for p_T^(rel) < 1. The waveform attenuation phenomena is observed in p_T^(rel),girth, and Dgirth distributions. The results obtained for D_(girth) from pp to Pb + Pb, where the wave-like distribution in pp collision is ahead of Pb + Pb collisions at small jetradii, indicates a strong medium effect.展开更多
To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure...To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external out-line and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.展开更多
基金Supported by National Natural Science Foundation of China(11505130,11775097,IRG1152106,11475068)CTGU(1910103,B2018023)
文摘Jet measurement is an ideal probe to explore the properties of the hot dense matter created in ultra- relativistic heavy-ion collisions. Recent results at the LHC show that large angle radiation is non-negligible, but the mechanisms and phenomenology of large angle radiation are still unclear and hotly debated. Considering the coexistence and competition of different physics mechanisms qualitatively, it is assumed that the radiation angle is enhanced randomly over a wide range based on the collinear approximation. Its effects on di-jet momentum imbalance, jet fragmentation function and jet shape are studied in pp collisions at 7 TeV. The results show that di-jet asymmetry is insensitive to large angle radiation, while jet shape and jet fragmentation functions are more sensitive and could explain experimental data well. We conclude that de-collimated radiation cannot be ignored for soft jets, and there is a contribution from large angle radiation (Ф 〉 0.7) of about 8%, which is significant for jet intrinsic structure measurement at PT,jeT 〈80 GeV/c.
文摘在相对论重离子碰撞中,整体喷注作为研究解禁闭的夸克胶子等离子体的重要探针近年来已被广泛研究。本工作基于多相输运模型(A Multi-Phase Transport model,AMPT),研究了在质心系能量为2.76 TeV的铅核-铅核碰撞中的双喷注不对称、喷注的碎裂函数和喷注形状三方面的内容。数值模拟结果表明,在喷注与部分子物质的强相互作用中,喷注会有明显的能量损失。末态双喷注不对称是由初态不对称度和部分子喷注能损的共同作用导致的;喷注的碎裂函数可以分解为碎裂强子化和组合强子化两部分;相比于领头喷注,由于次领头喷注能量损失更大,所以导致次领头喷注的形状改变更大一些。
基金supported by National Nature Science Foundation of China (No. 51506096)Foundation Research Project of Jiangsu Province (The Natural Science Fund No. BK20150765)
文摘To investigate the controlling method of interior ballistic stability of bulk-loaded propellant guns,the combustion-gas generator and cylindrical stepped-wall chamber are designed aiming at the injection processes of combustion-gases in liquid.The expansion courses of Taylor cavities and the turbulent mixing characteristic of gaseliquid are recorded by means of high speed photographic system.Based on the experiment,three-dimensional unsteady model on the interaction of gas and liquid is established to simulate expansion characteristics of twin combustion-gas jets in liquid under different nozzle diameters.The distribution regularities of characteristic parameter in jet field are obtained and analyzed.The results show the pressure,velocity and temperature distributions under different nozzle diameters are basically the same at the initial time.As time goes on,these characteristic parameters under different nozzle diameters have large differences.
基金Supported by National Natural Science Foundation of China(11505130,11847014,11775097 and CCNU18ZDPY04)
文摘Jet shape measurements are employed to explore the microscopic evolution mechanisms of parton-medium interaction in ultra-relativistic heavy-ion collisions. In this study, jet shape modifications are quantified in terms of the fragmentation function F(z), relative momentum p_T^(rel), density of charged particles p(r), jet angularity girth, jet momentum dispersion p_T^(disp),and LeS ub for proton-proton(pp) collisions at 0.9, 2.76. 5.02, 7,and 13 TeV, as well as for lead-lead collisions at 2.76 TeV and 5.02 TeV by JEWEL. A differential jet shape parameter Dgirth is proposed and studied at a smaller jet radius r < 0.3. The results indicate that the medium has the dominant effect on jet shape modification, which also has a weak dependence on the center-of-mass energy. Jet fragmentation is enhanced significantly at very low z < 0.02, and fragmented jet constituents are linearly spread to larger jet-radii for p_T^(rel) < 1. The waveform attenuation phenomena is observed in p_T^(rel),girth, and Dgirth distributions. The results obtained for D_(girth) from pp to Pb + Pb, where the wave-like distribution in pp collision is ahead of Pb + Pb collisions at small jetradii, indicates a strong medium effect.
基金Project support by the National Science Foundation of China(Grant No.50776048)
文摘To deal with the problem of how to control the interior ballistic stability in the bulk-loaded liquid propellant gun, the expansion and mixing process of the twin combustion-gas jets with high temperature and pressure in a liquid medium is studied in the cylindrical filling liquid chamber. A series of the jet expansion shapes is obtained by using a high-speed photographic system. The influences of the jet pressure on the jet expansion shape are discussed. Based on the experiments, the three-dimensional mathematical model is established. The expansion processes of the twin gas jets in the liquid medium are simulated by means of fluent to get the pressure, density, temperature, velocity contours and evolutionary process of vortices. Results show that the jet external out-line and tops are all irregular. The Kelvin-Helmholtz instability is shown in the whole expansion process. The numerical simulation results of the axial displacement of the twin gas jets in liquid agree well with the experiment.