In order to improve the engineering performance of a novel hydraulic shock generator, the fluid flow inside its complex passages is numerically investigated. The effects of the inlet flow velocity upon the turbulenc...In order to improve the engineering performance of a novel hydraulic shock generator, the fluid flow inside its complex passages is numerically investigated. The effects of the inlet flow velocity upon the turbulence intensity of the jet flow are analyzed. The calculated pressure loss is experimentally verified with the consideration of temperature determined viscosity shifting. The results are used as the reference in the further development of the hydraulic shock generator展开更多
Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (v...Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.展开更多
Non-transferred dc arc plasma generators are widely used in materials processing.They are generally considered steadily-operating devises.However,unsteady phenomena do exist in them, and may cause non-ideal effects in...Non-transferred dc arc plasma generators are widely used in materials processing.They are generally considered steadily-operating devises.However,unsteady phenomena do exist in them, and may cause non-ideal effects in processes which require high controllability and reproducibility. These unsteady phenomena can cause parameter fluctuations in the arc and the plasma jet,some of which have been studied in recent years.Several types and mechanisms of these phenomena have been identified.This paper reviews the research progress in this specific area,hoping to present a more complete picture of this subject.展开更多
Based on the fluid transient theory and explosive dynamics, a new type explosive driven jet is put forward. The generator of the proposed jet system comprises an explosive power source, a dynamic cavity, a spacing blo...Based on the fluid transient theory and explosive dynamics, a new type explosive driven jet is put forward. The generator of the proposed jet system comprises an explosive power source, a dynamic cavity, a spacing block, a water storage chamber, and a rubber membrane. The dynamic explosive source of power for the jet is composed of a cartridge and a bullet. The pressure in the dynamic cavity goes up to a range from 300 MPa to 350 MPa very quickly when the bullet is emitted. Driven by such a high pressure, the speed of the jet reaches 120 m/s. The effective distance to distinguish a fire is within 40 m. The jet has the following advantages over a conventional high-pressure water jet system: 1)strong power and strong transient force produced by dynamic source; 2) the energy of the dynamical source concentrated in a small scope with very little loss; 3) extensive applicability; and 4) safe usage without sparkling and smoke.展开更多
In this study,a jet cavitation device aimed at producing two-dimensional nanosheets was designed.The effects of cavitation generator type and jet pressure on the cavitation inception and intensity were examined by mon...In this study,a jet cavitation device aimed at producing two-dimensional nanosheets was designed.The effects of cavitation generator type and jet pressure on the cavitation inception and intensity were examined by monitoring the changes of sound pressure level(SPL).As such,the optimized cavitation generator with the best cavitation capability under the same ambient condition was determined.Further,BN and MoS 2,two kinds of layered materials,were exfoliated into individual flakes in aqueous solutions by this jet cavitation device.By investigating the morphology of these exfoliated flakes via scanning electron microscopy and transmission electron microscope,it was found that these pristine materials were mostly exfoliated into two-dimensional nanosheets,among which even monolayers were generally presented.This exfoliation process happened mainly due to the cavitation-induced intensive tensile stress acting on the layered materials.As graphene has been produced by this device successfully,it is anticipated that this jet cavitation device is suitable for producing other various two-dimensional nanosheets.展开更多
基金This project is supported by National Natural Science Foundation of China! (59835160).
文摘In order to improve the engineering performance of a novel hydraulic shock generator, the fluid flow inside its complex passages is numerically investigated. The effects of the inlet flow velocity upon the turbulence intensity of the jet flow are analyzed. The calculated pressure loss is experimentally verified with the consideration of temperature determined viscosity shifting. The results are used as the reference in the further development of the hydraulic shock generator
基金Support from Polish National Science Centre grant number N502 265837 as well as 6 EU FP UFAST and AITEB-2 projects
文摘Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.
基金supported by the National Natural Science Fouadation of China(50836007,10921062)
文摘Non-transferred dc arc plasma generators are widely used in materials processing.They are generally considered steadily-operating devises.However,unsteady phenomena do exist in them, and may cause non-ideal effects in processes which require high controllability and reproducibility. These unsteady phenomena can cause parameter fluctuations in the arc and the plasma jet,some of which have been studied in recent years.Several types and mechanisms of these phenomena have been identified.This paper reviews the research progress in this specific area,hoping to present a more complete picture of this subject.
基金the national Natural Science Foundation of China (No. 59874033).
文摘Based on the fluid transient theory and explosive dynamics, a new type explosive driven jet is put forward. The generator of the proposed jet system comprises an explosive power source, a dynamic cavity, a spacing block, a water storage chamber, and a rubber membrane. The dynamic explosive source of power for the jet is composed of a cartridge and a bullet. The pressure in the dynamic cavity goes up to a range from 300 MPa to 350 MPa very quickly when the bullet is emitted. Driven by such a high pressure, the speed of the jet reaches 120 m/s. The effective distance to distinguish a fire is within 40 m. The jet has the following advantages over a conventional high-pressure water jet system: 1)strong power and strong transient force produced by dynamic source; 2) the energy of the dynamical source concentrated in a small scope with very little loss; 3) extensive applicability; and 4) safe usage without sparkling and smoke.
基金supported by the Special Financial Support of Joint Building Project of the Beijing Education Committee
文摘In this study,a jet cavitation device aimed at producing two-dimensional nanosheets was designed.The effects of cavitation generator type and jet pressure on the cavitation inception and intensity were examined by monitoring the changes of sound pressure level(SPL).As such,the optimized cavitation generator with the best cavitation capability under the same ambient condition was determined.Further,BN and MoS 2,two kinds of layered materials,were exfoliated into individual flakes in aqueous solutions by this jet cavitation device.By investigating the morphology of these exfoliated flakes via scanning electron microscopy and transmission electron microscope,it was found that these pristine materials were mostly exfoliated into two-dimensional nanosheets,among which even monolayers were generally presented.This exfoliation process happened mainly due to the cavitation-induced intensive tensile stress acting on the layered materials.As graphene has been produced by this device successfully,it is anticipated that this jet cavitation device is suitable for producing other various two-dimensional nanosheets.