Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rule...Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes.展开更多
基金Supported by the National Natural Science Foundation of China(21276132)the Transformation Project of Scientific and Technological Achievements of Qingdao(16-6-2-50-nsh)
文摘Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes.