针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分...针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.展开更多
For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different...For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different data models. As such, levels of the local schemas are semantically very poor due to the limited expressiveness of traditional data models in which they were designed. Further more, most of the existing schema integration architectural components are inadequately equipped to handle the mapping schemas, especially when the semantics and structural conflicts are involved. This paper introduces an Intelligent Binary Schema Matching system (IBSMS), which exploits the phenomenon of making its components intelligent. That’s equipping its components such as translators and integrators with adequate knowledge about various data models. This allows the components acquire enough intelligence to maneuver or manipulate the correspondence between constructs from different models. In addition, the system has a Binary Matcher, which compares the attribute correspondences of various databases in a pairwise form, in order to establish the equivalences. With the establishment of the mappings, the users shall be able to access them (mappings) for their desired usage.展开更多
随着信息文明扑面而来,天下无道则人间无德的中国哲学智慧,在智能算法深处发出新的时代闪光。从"上帝之眼"到"上帝之手",人类的伦理地位发生根本改变。世界的自然进化不存在伦理问题,而世界的人为创构则不仅涉及伦...随着信息文明扑面而来,天下无道则人间无德的中国哲学智慧,在智能算法深处发出新的时代闪光。从"上帝之眼"到"上帝之手",人类的伦理地位发生根本改变。世界的自然进化不存在伦理问题,而世界的人为创构则不仅涉及伦理问题,而且使其日益具有整体性,从而将伦理研究提升到更高的整体层次。在创生意义上的信息创构活动中,"是"和"应该"之间通过"将成"(going to be)形成相互交织的双向循环,构成更高层次的整体机制。在智能算法深处,则可以看到规则规律一体化的深层机理:事实和价值在分门别类研究的基础上"合垅";规则和规律越来越呈现一体化发展趋势。由于特定的学科特质,这种整体发生的规则规律一体化回归首先在伦理学中得以开显,并逐渐形成越来越多具体学科一体化理解的整体观照。展开更多
文摘针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.
文摘For the past three decades, interoperability among heterogeneous systems had been a hard nut to crack due to the schematic and semantic perspectives that exist between objects. These systems were built under different data models. As such, levels of the local schemas are semantically very poor due to the limited expressiveness of traditional data models in which they were designed. Further more, most of the existing schema integration architectural components are inadequately equipped to handle the mapping schemas, especially when the semantics and structural conflicts are involved. This paper introduces an Intelligent Binary Schema Matching system (IBSMS), which exploits the phenomenon of making its components intelligent. That’s equipping its components such as translators and integrators with adequate knowledge about various data models. This allows the components acquire enough intelligence to maneuver or manipulate the correspondence between constructs from different models. In addition, the system has a Binary Matcher, which compares the attribute correspondences of various databases in a pairwise form, in order to establish the equivalences. With the establishment of the mappings, the users shall be able to access them (mappings) for their desired usage.
文摘随着信息文明扑面而来,天下无道则人间无德的中国哲学智慧,在智能算法深处发出新的时代闪光。从"上帝之眼"到"上帝之手",人类的伦理地位发生根本改变。世界的自然进化不存在伦理问题,而世界的人为创构则不仅涉及伦理问题,而且使其日益具有整体性,从而将伦理研究提升到更高的整体层次。在创生意义上的信息创构活动中,"是"和"应该"之间通过"将成"(going to be)形成相互交织的双向循环,构成更高层次的整体机制。在智能算法深处,则可以看到规则规律一体化的深层机理:事实和价值在分门别类研究的基础上"合垅";规则和规律越来越呈现一体化发展趋势。由于特定的学科特质,这种整体发生的规则规律一体化回归首先在伦理学中得以开显,并逐渐形成越来越多具体学科一体化理解的整体观照。