In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadratur...In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core...In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core is considered. Suppose the inner cavity and outer space of the structure are filled with air and fluid mediums, the mechanical response of the underwater structure is calculated with Galerkin method while the acoustic response is investigated by means of the Helmholtz integral. Some numerical examples are given and the effect of geometrical size and material parameters on mechanical and acoustic response is discussed.展开更多
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation co...Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.展开更多
A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this ...A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.展开更多
文摘In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
基金supported by the National Natural Science Foundation of China(No.11372105)the New Century Excellent Talents Program in University(No.NCET-13-0184)
文摘In this paper, an underwater structure is modeled as a cylindrical shell with internal bulkheads, and closed by a truncated conical shell, and it consists of metal substrate and sound absorbing coating, whose FGM core is considered. Suppose the inner cavity and outer space of the structure are filled with air and fluid mediums, the mechanical response of the underwater structure is calculated with Galerkin method while the acoustic response is investigated by means of the Helmholtz integral. Some numerical examples are given and the effect of geometrical size and material parameters on mechanical and acoustic response is discussed.
文摘Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.
文摘A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.