摘要
文章介绍求解一阶线性微分方程通解的两种新方法:积分因子法和变量变换法。根据微分方程的系统理论知识,严格推演公式,揭示一阶线性非齐次微分方程的通解与一阶线性齐次微分方程的通解之间的联系,并举例验证这两种方法的正确性和有效性。
Two new methods of solutions to the first order linear differential equations are introduced:integral factor method and variable transformation method.Based on the systematic theory of differential equations and strict deduction of formulas,the relation ship between the general solutions of first-order non-homogeneous linear differential equations and the general solutions of first-order homogeneous linear differential equations is revealed,and the correctness and effectiveness of these two methods are verified by ex amples.
作者
王满
Wang Man(School of Computer Science,Sichuan Technology and Business University,Meishan 620000 China)
出处
《四川工商学院学术新视野》
2019年第3期30-33,共4页
Academic New Vision of Sichuan Technology and Business University
基金
四川省民办教育协会2019年科研课题,课题名称:民办高校“产教融合,协同育人”机制研究,课题编号:MBXH19YB174。
关键词
一阶线性非齐次微分方程
积分因子法
变量变换法
常数变易法
公式法
First Order Linear Nonhomogeneous Differential Equations
Integral factor method
Variable transformation method
Constant Variation method
Formula method