The paper proposes a new text similarity computing method based on concept similarity in Chinese text processing. The new method converts text to words vector space model at first, and then splits words into a set of ...The paper proposes a new text similarity computing method based on concept similarity in Chinese text processing. The new method converts text to words vector space model at first, and then splits words into a set of concepts. Through computing the inner products between concepts, it obtains the similarity between words. The new method computes the similarity of text based on the similarity of words at last. The contributions of the paper include: 1) propose a new computing formula between words; 2) propose a new text similarity computing method based on words similarity; 3) successfully use the method in the application of similarity computing of WEB news; and 4) prove the validity of the method through extensive experiments.展开更多
Mathematical models for phenomena in the physical sciences are typically parameter-dependent, and the estimation of parameters that optimally model the trends suggested by experimental observation depends on how model...Mathematical models for phenomena in the physical sciences are typically parameter-dependent, and the estimation of parameters that optimally model the trends suggested by experimental observation depends on how model-observation discrepancies are quantified. Commonly used parameter estimation techniques based on least-squares minimization of the model-observation discrepancies assume that the discrepancies are quantified with the L<sup>2</sup>-norm applied to a discrepancy function. While techniques based on such an assumption work well for many applications, other applications are better suited for least-squared minimization approaches that are based on other norm or inner-product induced topologies. Motivated by an application in the material sciences, the new alternative least-squares approach is defined and an insightful analytical comparison with a baseline least-squares approach is provided.展开更多
基金Supported by the China Postdoctoral Science Foundation (Grant No. 20060400002)the Sichuan Youth Science and Technology Foundation of China (Grant No. 08JJ0109)+2 种基金the National Natural Science Foundation of China (Grant Nos.60473051, 60503037)the National High-tech Re- search and Development of China (Grant No. 2006AA01Z230)the Natural Science Foundation of Beijing Natural Science Foundation (Grant No. 4062018)
文摘The paper proposes a new text similarity computing method based on concept similarity in Chinese text processing. The new method converts text to words vector space model at first, and then splits words into a set of concepts. Through computing the inner products between concepts, it obtains the similarity between words. The new method computes the similarity of text based on the similarity of words at last. The contributions of the paper include: 1) propose a new computing formula between words; 2) propose a new text similarity computing method based on words similarity; 3) successfully use the method in the application of similarity computing of WEB news; and 4) prove the validity of the method through extensive experiments.
文摘Mathematical models for phenomena in the physical sciences are typically parameter-dependent, and the estimation of parameters that optimally model the trends suggested by experimental observation depends on how model-observation discrepancies are quantified. Commonly used parameter estimation techniques based on least-squares minimization of the model-observation discrepancies assume that the discrepancies are quantified with the L<sup>2</sup>-norm applied to a discrepancy function. While techniques based on such an assumption work well for many applications, other applications are better suited for least-squared minimization approaches that are based on other norm or inner-product induced topologies. Motivated by an application in the material sciences, the new alternative least-squares approach is defined and an insightful analytical comparison with a baseline least-squares approach is provided.