针对柑橘黄龙病热空气处理存在能耗高、加热设备笨重、传热较慢等问题,提出了柑橘黄龙病远红外热处理方法。为解决远红外加热时柑橘树温差过大的问题,搭建了柑橘黄龙病热空气快速处理温度场分布特性试验平台,研究了远红外灯管组数量、...针对柑橘黄龙病热空气处理存在能耗高、加热设备笨重、传热较慢等问题,提出了柑橘黄龙病远红外热处理方法。为解决远红外加热时柑橘树温差过大的问题,搭建了柑橘黄龙病热空气快速处理温度场分布特性试验平台,研究了远红外灯管组数量、单根灯管功率、加热时间、远红外灯与支架顶部距离对柑橘树温度场分布的影响,并对远红外加热影响因素进行优化。研究结果表明:远红外灯管组数量、单根灯管功率以及加热时间对柑橘树叶和枝干的温度场分布均有显著影响,远红外灯与支架顶部距离对树叶的温度场分布影响显著。试验优化后的参数为:远红外灯管组数量为3,单根灯管功率为1 k W,加热时间为3 min,远红外灯与支架顶部距离为10 cm。在此条件下,树叶温度平均值为58.1℃,枝干温度平均值为43.1℃,整体温度平均值为52.3℃。在此参数下对柑橘黄龙病进行远红外热处理田间试验,病菌浓度平均降低34.4%。研究结果可为柑橘黄龙病规模化远红外热处理设备的优化设计提供参考。展开更多
CrN coated steels assisted with a nano Cr interlayer were investigated. The Cr nano-interlayers were prepared by sputter deposition with a thickness about 70-100 nm. CrN coatings were also prepared by sputter depositi...CrN coated steels assisted with a nano Cr interlayer were investigated. The Cr nano-interlayers were prepared by sputter deposition with a thickness about 70-100 nm. CrN coatings were also prepared by sputter deposition on the Cr nano-interlayers. The crystal structures, microhardness, and scratch resistance of CrN/Cr coatings were determined. Results show that the Cr nano-interlayers improve scratch resistance and the microhardness of CrN coated steels. A rapid heat treatment with infrared (IR) was performed for coated specimens in the attempt to improve bonding, With IR heat treatments, the beneficial effect of the Cr nano-interlayers was clearly observed. Without the Cr nano-interlayers, severe cracks on the surface of coatings were observed after IR heat treatment. However, with a Cr interlayer, no cracks on the surface of CrN coatings were observed after the heat treatment. The scratch resistance of coatings was also affected by the Cr nano-interlayers. The scratch track was clean and showed significantly smaller amount of scratch debris for CrN coatings with Cr interlayers than those without the Cr nano-interlayers. The microhardness of coatings with the Cr nano-interlayers is higher than those without the Cr nano-interlayers after IR heat treatment. The Cr and CrN phase have been identified with X-ray diffraction analysis, and the results show that the higher the nitrogen content in the sputtering gas, the stronger the CrN peaks observed in the diffraction patterns are.展开更多
文摘针对柑橘黄龙病热空气处理存在能耗高、加热设备笨重、传热较慢等问题,提出了柑橘黄龙病远红外热处理方法。为解决远红外加热时柑橘树温差过大的问题,搭建了柑橘黄龙病热空气快速处理温度场分布特性试验平台,研究了远红外灯管组数量、单根灯管功率、加热时间、远红外灯与支架顶部距离对柑橘树温度场分布的影响,并对远红外加热影响因素进行优化。研究结果表明:远红外灯管组数量、单根灯管功率以及加热时间对柑橘树叶和枝干的温度场分布均有显著影响,远红外灯与支架顶部距离对树叶的温度场分布影响显著。试验优化后的参数为:远红外灯管组数量为3,单根灯管功率为1 k W,加热时间为3 min,远红外灯与支架顶部距离为10 cm。在此条件下,树叶温度平均值为58.1℃,枝干温度平均值为43.1℃,整体温度平均值为52.3℃。在此参数下对柑橘黄龙病进行远红外热处理田间试验,病菌浓度平均降低34.4%。研究结果可为柑橘黄龙病规模化远红外热处理设备的优化设计提供参考。
文摘CrN coated steels assisted with a nano Cr interlayer were investigated. The Cr nano-interlayers were prepared by sputter deposition with a thickness about 70-100 nm. CrN coatings were also prepared by sputter deposition on the Cr nano-interlayers. The crystal structures, microhardness, and scratch resistance of CrN/Cr coatings were determined. Results show that the Cr nano-interlayers improve scratch resistance and the microhardness of CrN coated steels. A rapid heat treatment with infrared (IR) was performed for coated specimens in the attempt to improve bonding, With IR heat treatments, the beneficial effect of the Cr nano-interlayers was clearly observed. Without the Cr nano-interlayers, severe cracks on the surface of coatings were observed after IR heat treatment. However, with a Cr interlayer, no cracks on the surface of CrN coatings were observed after the heat treatment. The scratch resistance of coatings was also affected by the Cr nano-interlayers. The scratch track was clean and showed significantly smaller amount of scratch debris for CrN coatings with Cr interlayers than those without the Cr nano-interlayers. The microhardness of coatings with the Cr nano-interlayers is higher than those without the Cr nano-interlayers after IR heat treatment. The Cr and CrN phase have been identified with X-ray diffraction analysis, and the results show that the higher the nitrogen content in the sputtering gas, the stronger the CrN peaks observed in the diffraction patterns are.