The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these b...The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these blind zones along with onshore base stations.In this paper,we consider the use of UAV for maritime coverage enhancement.Particularly,to serve more ships on the vast oceanic area with limited spectrum resources,we employ non-orthogonal multiple access(NOMA).A joint power and transmission duration allocation problem is formulated to maximize the minimum ship throughput,with the constraints on onboard communication energy.Different from previous works,we only assume the slowly time-varying large-scale channel state information(CSI)to reduce the system cost,as the large-scale CSI is locationdependent and can be obtained according to a priori radio map.To solve the non-convex problem,we decompose it into two subproblems and solve them in an iterative way.Simulation results show the effectiveness of the proposed solution.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
Cross-region innovation is widely recognized as an important source of the long-term regional innovation capacity.In the recent past,a growing number of studies has investigated the network structure and mechanisms of...Cross-region innovation is widely recognized as an important source of the long-term regional innovation capacity.In the recent past,a growing number of studies has investigated the network structure and mechanisms of cross-region innovation collaboration in various contexts.However,existing research mainly focuses on physical effects,such as geographical distance and high-speed railway connections.These studies ignore the intangible drivers in a changing environment,the more digitalized economy and the increasingly solidified innovation network structure.Thus,the focus of this study is on estimating determinants of innovation networks,especially on intangible drivers,which have been largely neglected so far.Using city-level data of Chinese patents(excluding Hong Kong,Macao,and Taiwan Province of China),we trace innovation networks across Chinese cities over a long period of time.By integrating a measure on Information and Communications Technology(ICT)development gap and network structural effects into the general proximity framework,this paper explores the changing mechanisms of Chinese innovation networks from a new perspective.The results show that the structure of cross-region innovation networks has changed in China.As mechanisms behind this development,the results confirm the increasingly important role of intangible drivers in Chinese inter-city innovation collaboration when controlling for effects of physical proximity,such as geographical distance.Since digitalization and coordinated development are the mainstream trends in China and other developing countries,these countries'inter-city innovation collaboration patterns will witness dramatic changes under the influence of intangible drivers.展开更多
Information freshness is a key factor for Internet-of-Things(IoT)to make appropriate decisions and operations.This paper proposes an analytical framework for evaluating the timeliness performance of the IoT system bas...Information freshness is a key factor for Internet-of-Things(IoT)to make appropriate decisions and operations.This paper proposes an analytical framework for evaluating the timeliness performance of the IoT system based on Unmanned Aerial Vehicle(UAV)lossy communications.The performance analysis consists of the outage probability analysis and the Age-of-Information(AoI)analysis with outages.To begin with,we solve a lossy coding problem formulated from the UAV communication system,and derive a closed-form expression of the outage probability based on Shannon's lossy source-channel separation theorem.Then,we characterize the Peak AoI(PAoI)for the considered system,and further minimize the PAoI by deriving the optimal rate for generating information.Moreover,we analyze the system performance through theoretical calculations and simulations.The results indicate that the optimal server utilization ratio is always no larger than 0.5.In practical applications,we can utilize the proposed analytical framework to determine the system parameters which guarantee the timeliness performance of UAV lossy communications.展开更多
Automation has arrived in the low voltage grid domain. In the next few years, the secondary substation—at the barriers of medium and low voltage grids—will thus be upgraded to enable novel functions. In this paper, ...Automation has arrived in the low voltage grid domain. In the next few years, the secondary substation—at the barriers of medium and low voltage grids—will thus be upgraded to enable novel functions. In this paper, we present various smart grid applications running on such intelligent secondary substations(iSSN) including their interaction with each other. We integrate energy consumption and production data, as well as forecasts, sensed from the smart buildings’ energy management systems(BEMSs) into the operation of the low voltage grid. A suitable framework for those modular applications includes features to initiate their installation, update, removal, the remote operator site, and not requiring staff on-site for such typical reappearing maintenance tasks.展开更多
Cyberterrorism poses a significant threat to the national security of the United States of America (USA), with critical infrastructure, such as commercial facilities, dams, emergency services, food and agriculture, he...Cyberterrorism poses a significant threat to the national security of the United States of America (USA), with critical infrastructure, such as commercial facilities, dams, emergency services, food and agriculture, healthcare and public health, and transportation systems virtually at risk. Consequently, this is due primarily to the country’s heavy dependence on computer networks. With both domestic and international terrorists increasingly targeting any vulnerabilities in computer systems and networks, information sharing among security agencies has become critical. Cyberterrorism can be regarded as the purest form of information warfare. This literature review examines cyberterrorism and strategic communications, focusing on domestic cyberterrorism. Notable themes include the meaning of cyberterrorism, how cyberterrorism differs from cybercrime, and the threat posed by cyberterrorism to the USA. Prevention and deterrence of cyberterrorism through information sharing and legislation are also key themes. Finally, gaps in knowledge are identified, and questions warranting additional research are outlined.展开更多
Photonics is poised to play a unique role in quantum technology for computation,communications and sensing.Meanwhile,integrated photonic circuits-with their intrinsic phase stability and high-performance,nanoscale com...Photonics is poised to play a unique role in quantum technology for computation,communications and sensing.Meanwhile,integrated photonic circuits-with their intrinsic phase stability and high-performance,nanoscale components-offer a route to scaling.However,each integrated platform has a unique set of advantages and pitfalls,which can limit their power.So far,the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics.However,thin-film lithium niobate(TFLN)is emerging as a powerful platform with unique capabilities;advances in fabrication have yielded loss metrics competitive with any integrated photonics platform,while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation.In this short review,we explore the prospects of dynamic quantum circuits-such as multiplexed photon sources and entanglement generation-on hybrid TFLN on silicon(TFLN/Si)photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow.展开更多
基金supported in part by National Natural Science Foundation of China(No.61922049,61771286,61941104)the National Key R&D Program of China(2020YFA0711301)+2 种基金the Beijing National Research Center for Information Science and Technology project(BNR2020RC01016)the Nantong Technology Program(JC2019115)the Beijing Innovation Center for Future Chip。
文摘The lack of communication infrastructure in the ocean inevitably leads to coverage blind zones.In addition to high-throughput marine satellites,unmanned aerial vehicles(UAVs)can be used to provide coverage for these blind zones along with onshore base stations.In this paper,we consider the use of UAV for maritime coverage enhancement.Particularly,to serve more ships on the vast oceanic area with limited spectrum resources,we employ non-orthogonal multiple access(NOMA).A joint power and transmission duration allocation problem is formulated to maximize the minimum ship throughput,with the constraints on onboard communication energy.Different from previous works,we only assume the slowly time-varying large-scale channel state information(CSI)to reduce the system cost,as the large-scale CSI is locationdependent and can be obtained according to a priori radio map.To solve the non-convex problem,we decompose it into two subproblems and solve them in an iterative way.Simulation results show the effectiveness of the proposed solution.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
基金Under the auspices of China Scholarship Council。
文摘Cross-region innovation is widely recognized as an important source of the long-term regional innovation capacity.In the recent past,a growing number of studies has investigated the network structure and mechanisms of cross-region innovation collaboration in various contexts.However,existing research mainly focuses on physical effects,such as geographical distance and high-speed railway connections.These studies ignore the intangible drivers in a changing environment,the more digitalized economy and the increasingly solidified innovation network structure.Thus,the focus of this study is on estimating determinants of innovation networks,especially on intangible drivers,which have been largely neglected so far.Using city-level data of Chinese patents(excluding Hong Kong,Macao,and Taiwan Province of China),we trace innovation networks across Chinese cities over a long period of time.By integrating a measure on Information and Communications Technology(ICT)development gap and network structural effects into the general proximity framework,this paper explores the changing mechanisms of Chinese innovation networks from a new perspective.The results show that the structure of cross-region innovation networks has changed in China.As mechanisms behind this development,the results confirm the increasingly important role of intangible drivers in Chinese inter-city innovation collaboration when controlling for effects of physical proximity,such as geographical distance.Since digitalization and coordinated development are the mainstream trends in China and other developing countries,these countries'inter-city innovation collaboration patterns will witness dramatic changes under the influence of intangible drivers.
基金supported by the National Natural Science Foundation of China(NSFC)(No.62001387)Shanghai Academy of Spaceflight Technology(SAST),China(No.SAST2020124).
文摘Information freshness is a key factor for Internet-of-Things(IoT)to make appropriate decisions and operations.This paper proposes an analytical framework for evaluating the timeliness performance of the IoT system based on Unmanned Aerial Vehicle(UAV)lossy communications.The performance analysis consists of the outage probability analysis and the Age-of-Information(AoI)analysis with outages.To begin with,we solve a lossy coding problem formulated from the UAV communication system,and derive a closed-form expression of the outage probability based on Shannon's lossy source-channel separation theorem.Then,we characterize the Peak AoI(PAoI)for the considered system,and further minimize the PAoI by deriving the optimal rate for generating information.Moreover,we analyze the system performance through theoretical calculations and simulations.The results indicate that the optimal server utilization ratio is always no larger than 0.5.In practical applications,we can utilize the proposed analytical framework to determine the system parameters which guarantee the timeliness performance of UAV lossy communications.
基金supported by the Austrian Ministry for Transport,Innovation and Technology(BMVIT)the Austrian Research Promotion Agency(FFG)under Grant No.849902the Austrian Climate and Energy Fund(KLIEN)under Grant No.846141
文摘Automation has arrived in the low voltage grid domain. In the next few years, the secondary substation—at the barriers of medium and low voltage grids—will thus be upgraded to enable novel functions. In this paper, we present various smart grid applications running on such intelligent secondary substations(iSSN) including their interaction with each other. We integrate energy consumption and production data, as well as forecasts, sensed from the smart buildings’ energy management systems(BEMSs) into the operation of the low voltage grid. A suitable framework for those modular applications includes features to initiate their installation, update, removal, the remote operator site, and not requiring staff on-site for such typical reappearing maintenance tasks.
文摘Cyberterrorism poses a significant threat to the national security of the United States of America (USA), with critical infrastructure, such as commercial facilities, dams, emergency services, food and agriculture, healthcare and public health, and transportation systems virtually at risk. Consequently, this is due primarily to the country’s heavy dependence on computer networks. With both domestic and international terrorists increasingly targeting any vulnerabilities in computer systems and networks, information sharing among security agencies has become critical. Cyberterrorism can be regarded as the purest form of information warfare. This literature review examines cyberterrorism and strategic communications, focusing on domestic cyberterrorism. Notable themes include the meaning of cyberterrorism, how cyberterrorism differs from cybercrime, and the threat posed by cyberterrorism to the USA. Prevention and deterrence of cyberterrorism through information sharing and legislation are also key themes. Finally, gaps in knowledge are identified, and questions warranting additional research are outlined.
基金We acknowledge funding from VILLUM FONDEN,QUANPIC(ref.00025298)the Center of Excellence,Denmark SPOC(ref.DNRF123).
文摘Photonics is poised to play a unique role in quantum technology for computation,communications and sensing.Meanwhile,integrated photonic circuits-with their intrinsic phase stability and high-performance,nanoscale components-offer a route to scaling.However,each integrated platform has a unique set of advantages and pitfalls,which can limit their power.So far,the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics.However,thin-film lithium niobate(TFLN)is emerging as a powerful platform with unique capabilities;advances in fabrication have yielded loss metrics competitive with any integrated photonics platform,while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation.In this short review,we explore the prospects of dynamic quantum circuits-such as multiplexed photon sources and entanglement generation-on hybrid TFLN on silicon(TFLN/Si)photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow.