This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the bo...This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the boundary T. The above boundary value problem is called Problem G. Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition (0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of solutions and solvability for a modified problem. Then we present results on solvability of Problem G.展开更多
In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second ord...In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second order ordinary differential equa-tions.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed poi...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
We consider a Hilbert boundary value problem with an unknown parametric function on arbitrary infinite straight line passing through the origin. We propose to transform the Hilbert boundary value problem to Riemann bo...We consider a Hilbert boundary value problem with an unknown parametric function on arbitrary infinite straight line passing through the origin. We propose to transform the Hilbert boundary value problem to Riemann boundary value problem, and address it by defining symmetric extension for holomorphic functions about an arbitrary straight line passing through the origin. Finally, we develop the general solution and the solvable conditions for the Hilbert boundary value problem.展开更多
文摘This article discusses the general boundary value problem for the nonlinear uniformly elliptic equation of second order in D (0.1) and the boundary condition,(0.2) in a multiply connected infinite domain D with the boundary T. The above boundary value problem is called Problem G. Problem G extends the work [8] in which the equation (0.1) includes a nonlinear lower term and the boundary condition (0.2) is more general. If the complex equation (0.1) and the boundary condition (0.2) meet certain assumptions, some solvability results for Problem G can be obtained. By using reduction to absurdity, we first discuss a priori estimates of solutions and solvability for a modified problem. Then we present results on solvability of Problem G.
基金Project supported financially by the National Natural Science Foundation of China (1087111610671167)
文摘In this paper, we consider a two-point boundary value problem for a system of second order ordinary differential equations. Under some conditions, we show the existence of positive solution to the system of second order ordinary differential equa-tions.
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive superlinear integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
文摘We consider a Hilbert boundary value problem with an unknown parametric function on arbitrary infinite straight line passing through the origin. We propose to transform the Hilbert boundary value problem to Riemann boundary value problem, and address it by defining symmetric extension for holomorphic functions about an arbitrary straight line passing through the origin. Finally, we develop the general solution and the solvable conditions for the Hilbert boundary value problem.