期刊文献+

无穷区间上分数p-Laplacian方程边值问题正解的存在性 被引量:2

Existence of positive solutions for fractional boundary value problem with p-Laplacian operator in infinite interval
下载PDF
导出
摘要 应用锥上的一个不动点定理,讨论了一类分数p-Laplacian方程在无穷区间上的m点边值问题正解的多重性,获得了该边值问题至少存在三个正解的充分条件,并举例说明了所得结果的有效性. By using the fixed-point theorem on cone, the authors consider the multiple positive solutions for m- point fractional boundary value problem with p-Laplaeian operator in infinite interval, sufficient conditions for the existence of at least three positive solutions ave obtained. Moreover, an example is given to show the effectiveness of the works.
机构地区 湘南学院数学系
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2014年第2期201-210,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 湖南省自然科学基金(11JJ3005) 湖南省重点建设学科基金
关键词 分数p-Laplacian方程 无穷区间 边值问题 不动点定理 存在性 fractional p-Laplacian infinite interval boundary value problem fixed-point theorem positive solutions
  • 相关文献

参考文献16

  • 1Podlubny I. Fractional differential equations[M].New York:Academic Press,Inc,1999. 被引量:1
  • 2Samko S G,Kilbas A A,Marichev O I. Fractional integrals and derivatives:Theory and Appliactions[M].Yverdon,Switzerland:Gordon and Breach Science Publisher,1993. 被引量:1
  • 3Kilbas A A,Srivastava H M,Trujillo J J. Theory and applications of fraction differenti equations[A].Amsterdam:Elsevier,2006. 被引量:1
  • 4Lakshmikantham V,Leela S,Vasundhara Devi J. Theory of Fraction Dynamic Systems[M].Cambridge:Cembridge Academic,2009. 被引量:1
  • 5Hussein A,Salem H. On the fractional order point boundary value problem in reflexive Banach spaces and weak topologies[J].Journal of Computational and Applied Mathematics,2009,(02):565-572. 被引量:1
  • 6Zhang Shuqin. Positive solutions for boundary value problems of nonliear fractional differential equations[J].Electron J Differ Eqs,2006.1-12. 被引量:1
  • 7Benchohra M,Hamani S,Ntouyas S K. Boundary value problems for differential equations with fractional order and nonlocal conditions[J].Nonlinear Anal,2009,(7-8):2391-2396. 被引量:1
  • 8Liu Zhenhai,Sun Jihua. Nonlinear boundary value problems of fractional differential systems[J].Computers & Mathematics with Applications,2012.463-475. 被引量:1
  • 9Liu Jinbo,Liu Zhenhai. On the existence of anti-periodic solutions for implicit differential equations[J].Acta Math Hungar,2011,(03):294-305. 被引量:1
  • 10Bai Zhanbing,Lu Haishen. Positive solutions for boundary value problem of nonlinear fractional differential equation[J].Journal of Mathematical Analysis and Applications,2005,(02):495-505. 被引量:1

同被引文献22

  • 1林晓洁,杜增吉,刘文斌.无穷区间上的二阶边值问题的多解性[J].数学的实践与认识,2007,37(22):144-148. 被引量:3
  • 2Wu Ke, Baleanu D. Discrete fractional logistic map and its chaos. Nonlinear Dyn, 2014, 75(1-2) 283-287. 被引量:1
  • 3Atici F M, Sengul S. Modeling with fractional difference equations. J. Math. Anal. Appl., 2010, 369(1): 1-9. 被引量:1
  • 4Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations. J. Difference Equ. Appl., 2011, 17(4): 445-456. 被引量:1
  • 5Goodrich C S. On a first-order semipositone discrete fractional boundary value problem. Arch. Math., 2012, 99(7): 509-518. 被引量:1
  • 6Goodrich C S. On discrete fractional three-point boundary value problems. J. Difference Equ. Appl., 2012, 18(3): 397-415. 被引量:1
  • 7Goodrich C S. Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Compt., 2011, 217(9): 4740-4753. 被引量:1
  • 8Atici F M, Eloe P W. A transform method in discrete fractional calculus. Int. J. Differ. Equ., 2007, 2(2): 165-176. 被引量:1
  • 9Pan Yuanyuan, Han Zhenlai, Sun Shurong, Hou Chuanxia. The existence of solutions to a class of boundary value problems with fractional difference equations. Advances in difference Equations, 2013, 275:1 -20. 被引量:1
  • 10Ferreira R A C. Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. Journal of Difference Equations and Applications, 2013, 19(5): 712-718. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部