Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the re...Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.展开更多
In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,tr...In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods.展开更多
基金supported by the National Natural Science Foundation of China(61773087)the National Key Research and Development Program of China(2018YFB1601500)High-tech Ship Research Project of Ministry of Industry and Information Technology-Research of Intelligent Ship Testing and Verifacation([2018]473)
文摘Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.
基金This research has been funded by Dirección General de Investigaciones of Universidad Santiago de Cali under call No.01-2021.The authors would like to thank Chennai Institute of Technology for providing us with various resources and unconditional support for carrying out this study.
文摘In the present industrial revolution era,the industrial mechanical system becomes incessantly highly intelligent and composite.So,it is necessary to develop data-driven and monitoring approaches for achieving quick,trustable,and high-quality analysis in an automated way.Fault diagnosis is an essential process to verify the safety and reliability operations of rotating machinery.The advent of deep learning(DL)methods employed to diagnose faults in rotating machinery by extracting a set of feature vectors from the vibration signals.This paper presents an Intelligent Industrial Fault Diagnosis using Sailfish Optimized Inception with Residual Network(IIFD-SOIR)Model.The proposed model operates on three major processes namely signal representation,feature extraction,and classification.The proposed model uses a Continuous Wavelet Transform(CWT)is for preprocessed representation of the original vibration signal.In addition,Inception with ResNet v2 based feature extraction model is applied to generate high-level features.Besides,the parameter tuning of Inception with the ResNet v2 model is carried out using a sailfish optimizer.Finally,a multilayer perceptron(MLP)is applied as a classification technique to diagnose the faults proficiently.Extensive experimentation takes place to ensure the outcome of the presented model on the gearbox dataset and a motor bearing dataset.The experimental outcome indicated that the IIFD-SOIR model has reached a higher average accuracy of 99.6%and 99.64%on the applied gearbox dataset and bearing dataset.The simulation outcome ensured that the proposed model has attained maximum performance over the compared methods.