Let (E,ξ)=indlim (En,ξn) be an inductive limit of a sequence of locally convex spaces,For brevity,denote by (DS) each set Bbounded in (E,ξ) is contained in some En; and (DST) each set B bounded in (E,ξ) is co...Let (E,ξ)=indlim (En,ξn) be an inductive limit of a sequence of locally convex spaces,For brevity,denote by (DS) each set Bbounded in (E,ξ) is contained in some En; and (DST) each set B bounded in (E,ξ) is contained and bounded in some (En,ξn). Theovem 1.(DS) holds provided that (i) for each n∈N,there is a neighborhood Un of o in (En,ξn) and m(n)∈ such that -↑Un^E包含于Em(n),and (ii) for any neighborhood V n of o in (En,ξn),∞↑Un=1 Vn absorbs every bounded set in (E,ξ). theorem 2 Let all (En,ξn) be metrizable and (DS) hold,then for each bounded set B IN (E,ξ)and each n ∈N thcrc is a neighborhood U k of o in (Ek,ξk), 1≤k≤n ,and m(n)∈N such that ——↑(B+U1+U2+…+Un)^E包含于 Em(n). theorem 3. Let all (En,ξn) be Frechet spaces.Then (DST) holds if and only if (i) for each n ∈N,there is u neighborhood U n of in (En,ξn) and m(n)∈N such that 0↑Un^E包含于Em(n),and (ii) for each each closed ,absosed,absolutely conuex,bounded set B in (E,ξ),∞↑Un=1((εnB)∩Un)absorbs B,where U n is any neighborhood of o in (En,ξn) and εn is any positive number for every n ∈N。展开更多
This paper is a survey on the recent work of the authors and their col-laborators on the Classification of Inductive Limit C*-algebras. Some examples are presented to explain several important ideas.
文摘Let (E,ξ)=indlim (En,ξn) be an inductive limit of a sequence of locally convex spaces,For brevity,denote by (DS) each set Bbounded in (E,ξ) is contained in some En; and (DST) each set B bounded in (E,ξ) is contained and bounded in some (En,ξn). Theovem 1.(DS) holds provided that (i) for each n∈N,there is a neighborhood Un of o in (En,ξn) and m(n)∈ such that -↑Un^E包含于Em(n),and (ii) for any neighborhood V n of o in (En,ξn),∞↑Un=1 Vn absorbs every bounded set in (E,ξ). theorem 2 Let all (En,ξn) be metrizable and (DS) hold,then for each bounded set B IN (E,ξ)and each n ∈N thcrc is a neighborhood U k of o in (Ek,ξk), 1≤k≤n ,and m(n)∈N such that ——↑(B+U1+U2+…+Un)^E包含于 Em(n). theorem 3. Let all (En,ξn) be Frechet spaces.Then (DST) holds if and only if (i) for each n ∈N,there is u neighborhood U n of in (En,ξn) and m(n)∈N such that 0↑Un^E包含于Em(n),and (ii) for each each closed ,absosed,absolutely conuex,bounded set B in (E,ξ),∞↑Un=1((εnB)∩Un)absorbs B,where U n is any neighborhood of o in (En,ξn) and εn is any positive number for every n ∈N。
基金Both authors are supported by NSF grant DMS9970840 This material is also based uponwork supported by,the U.S. Army Research Office under grant number DAADl9-00-1-0152 for both authors.
文摘This paper is a survey on the recent work of the authors and their col-laborators on the Classification of Inductive Limit C*-algebras. Some examples are presented to explain several important ideas.