Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporat...Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporating conductive support or foreign elements have been adopted to develop efficient electrocat- alysts. Herein, we summarize recent progresses and propose in-situ electrochemical activation as a new pretreating technique for enhanced catalytic performances. The activation techniques mainly comprise facile electrochemical processes such as anodic oxidation, cathodic reduction, etching, lithium-assisted tuning and counter electrode electro-dissolution. During these electrochemicaI treatments, the catalyst surfaces are modified from bulk phase, which can tune local electronic structures, create more active spe- cies. enlarge surface area and thus improve the catalytic performances. Meanwhile, this technique can couple the atomic, electronic structures with electrocatalysis mechanisms for water splitting. Compared to traditional chemical treatment, the in-situ electrochemical activation techniques have superior advantages such as facile operation, mild environment, variable control, high efficiency and flex- ibility. This review may provide guidance for improving water electrolysis efficiencies and hold promis- ing for application in many other energy-conversion fields such as supercapacitors, fuel cells and batteries.展开更多
Hierarchical porous carbons (HPCs) are obtained via in-situ activation of interpenetrating polymer networks (IPNs) obtained from simultaneous polymerization of resorcinol/formaldehyde (R/F) and polyacrylamide (PAM). T...Hierarchical porous carbons (HPCs) are obtained via in-situ activation of interpenetrating polymer networks (IPNs) obtained from simultaneous polymerization of resorcinol/formaldehyde (R/F) and polyacrylamide (PAM). The hierarchically micro-, meso-and macroporous structure of as-prepared HPCs is attributed to the synergistic pore-forming effect of PAM and KOH, including PAM decomposition, KOH chemical activation, and a foaming process of potassium polyacrylate formed by partial hydrolysis of PAM in KOH aqueous solution. The typical HPC electrode with the highest surface area (2544 m2/g) shows a high specific capacitance of 261 F/g at 1.0 A/g and a superior rate capability of 216 F/g at 20 A/g in alkaline electrolyte. Moreover, the electrode maintains the capacitance retention of 90.8% after 10000 chargingdischarging cycles at 1.0 A/g, exhibiting long cycling life. This study highlights a new avenue towards IPNs-derived carbons with unique pore structure for promising electrochemical applications.展开更多
Variable temperature in situ FTIR spectroscopy has been used as the primary tool to investigate the effects of temperature(10 to 50 ℃) on formaldehyde dissociative adsorption and electro oxidation on the Ru(00...Variable temperature in situ FTIR spectroscopy has been used as the primary tool to investigate the effects of temperature(10 to 50 ℃) on formaldehyde dissociative adsorption and electro oxidation on the Ru(0001) electrode in perchloric acid solution, and the results were interpreted in terms of the surface chemistry of the Ru(0001) electrode and compared to those obtained during our previous studies on the adsorption of CO under the same conditions. It was found that formaldehyde did undergo dissociative adsorption, even at -200 mV vs . Ag/AgCl, to form linear(CO L) and 3 fold hollow(CO H) binding CO adsorbates. In contrast to the adsorption of CO, it was found that increasing the temperature to 50 ℃ markedly increased the amount of CO adsorbates formed on the Ru(0001) surface from the adsorption of formaldehyde. On increasing the potential, the electro oxidation of the CO adsorbates to CO 2 took place via reaction with the active (1×1) O oxide. A significant increase in the surface reactivity was observed on the RuO 2(100) phase formed at higher potentials. Formic acid was detected as a partial oxidation product during formaldehyde electro oxidation. The data obtained at 50 ℃ are markedly different from those collected at 10 and 25 ℃ in terms of the amount of both CO 2 and formic acid formed and the adsorbed CO L and CO H species observed. These results were rationalized by the thermal effects on both the loosening of the CO adlayer and the activation of surface oxide on increasing the temperature.展开更多
The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest ...The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest of Songliao Basin,Chang 7 Member of Triassic Yanchang Formation in the southwest of Ordos Basin,Paleogene in the southwest of Qaidam Basin,and Lucaogou Formation of Jimusar Sag in the east of Junggar Basin.The results show that activation energy of hydrocarbon generation of organic matter is closely related to maturity and mainly ranges between 197 kJ/mol and 227 kJ/mol.On this basis,the temperature required for organic matter in shale to convert into oil was calculated.The ideal heating temperature is between 270℃and 300℃,and the conversation rate can reach 90%after 50-300 days of heating at constant temperature.When the temperature rises at a constant rate,the temperature corresponding to the major hydrocarbon generation period ranges from 225 to 350℃at the temperature rise rate of 1-150℃/month.In order to obtain higher economic benefits,it is suggested to adopt higher temperature rise rate(60-150℃/month).The more reliable kinetic parameters obtained can provide a basis for designing more reasonable scheme of in-situ heating conversion.展开更多
Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activa...Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.展开更多
基金financially supported by Shandong Provincial Natural Science Foundation,China (ZR2017MB059)the National Natural Science Foundation of China (21776314)the Fundamental Research Funds for the Central Universities (18CX05016A)
文摘Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporating conductive support or foreign elements have been adopted to develop efficient electrocat- alysts. Herein, we summarize recent progresses and propose in-situ electrochemical activation as a new pretreating technique for enhanced catalytic performances. The activation techniques mainly comprise facile electrochemical processes such as anodic oxidation, cathodic reduction, etching, lithium-assisted tuning and counter electrode electro-dissolution. During these electrochemicaI treatments, the catalyst surfaces are modified from bulk phase, which can tune local electronic structures, create more active spe- cies. enlarge surface area and thus improve the catalytic performances. Meanwhile, this technique can couple the atomic, electronic structures with electrocatalysis mechanisms for water splitting. Compared to traditional chemical treatment, the in-situ electrochemical activation techniques have superior advantages such as facile operation, mild environment, variable control, high efficiency and flex- ibility. This review may provide guidance for improving water electrolysis efficiencies and hold promis- ing for application in many other energy-conversion fields such as supercapacitors, fuel cells and batteries.
基金financially supported by the National Natural Science Foundation of China(Nos. 51772216, 21703161 and 21875165)the Science and Technology Commission of Shanghai Municipality, China (No. 14DZ2261100)the Fundamental Research Funds for the Central Universities
文摘Hierarchical porous carbons (HPCs) are obtained via in-situ activation of interpenetrating polymer networks (IPNs) obtained from simultaneous polymerization of resorcinol/formaldehyde (R/F) and polyacrylamide (PAM). The hierarchically micro-, meso-and macroporous structure of as-prepared HPCs is attributed to the synergistic pore-forming effect of PAM and KOH, including PAM decomposition, KOH chemical activation, and a foaming process of potassium polyacrylate formed by partial hydrolysis of PAM in KOH aqueous solution. The typical HPC electrode with the highest surface area (2544 m2/g) shows a high specific capacitance of 261 F/g at 1.0 A/g and a superior rate capability of 216 F/g at 20 A/g in alkaline electrolyte. Moreover, the electrode maintains the capacitance retention of 90.8% after 10000 chargingdischarging cycles at 1.0 A/g, exhibiting long cycling life. This study highlights a new avenue towards IPNs-derived carbons with unique pore structure for promising electrochemical applications.
文摘Variable temperature in situ FTIR spectroscopy has been used as the primary tool to investigate the effects of temperature(10 to 50 ℃) on formaldehyde dissociative adsorption and electro oxidation on the Ru(0001) electrode in perchloric acid solution, and the results were interpreted in terms of the surface chemistry of the Ru(0001) electrode and compared to those obtained during our previous studies on the adsorption of CO under the same conditions. It was found that formaldehyde did undergo dissociative adsorption, even at -200 mV vs . Ag/AgCl, to form linear(CO L) and 3 fold hollow(CO H) binding CO adsorbates. In contrast to the adsorption of CO, it was found that increasing the temperature to 50 ℃ markedly increased the amount of CO adsorbates formed on the Ru(0001) surface from the adsorption of formaldehyde. On increasing the potential, the electro oxidation of the CO adsorbates to CO 2 took place via reaction with the active (1×1) O oxide. A significant increase in the surface reactivity was observed on the RuO 2(100) phase formed at higher potentials. Formic acid was detected as a partial oxidation product during formaldehyde electro oxidation. The data obtained at 50 ℃ are markedly different from those collected at 10 and 25 ℃ in terms of the amount of both CO 2 and formic acid formed and the adsorbed CO L and CO H species observed. These results were rationalized by the thermal effects on both the loosening of the CO adlayer and the activation of surface oxide on increasing the temperature.
基金Supported by the PetroChina Science and Technology Major Project(2016E-0101).
文摘The kinetic parameters of hydrocarbon generation are determined through experimental simulation and mathematical calculation using four typical samples selected from the Cretaceous Nenjiang Formation in the northwest of Songliao Basin,Chang 7 Member of Triassic Yanchang Formation in the southwest of Ordos Basin,Paleogene in the southwest of Qaidam Basin,and Lucaogou Formation of Jimusar Sag in the east of Junggar Basin.The results show that activation energy of hydrocarbon generation of organic matter is closely related to maturity and mainly ranges between 197 kJ/mol and 227 kJ/mol.On this basis,the temperature required for organic matter in shale to convert into oil was calculated.The ideal heating temperature is between 270℃and 300℃,and the conversation rate can reach 90%after 50-300 days of heating at constant temperature.When the temperature rises at a constant rate,the temperature corresponding to the major hydrocarbon generation period ranges from 225 to 350℃at the temperature rise rate of 1-150℃/month.In order to obtain higher economic benefits,it is suggested to adopt higher temperature rise rate(60-150℃/month).The more reliable kinetic parameters obtained can provide a basis for designing more reasonable scheme of in-situ heating conversion.
文摘Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.