Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of ...Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.展开更多
文摘Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.