With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,whic...With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,which deepens our understanding of microorganisms.In this review,the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well.Moreover,the characteristics of the currently emerging microbial single-cell sequencing(Microbe-seq)technology were summarized,and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status.Despite its mature development,the Microbe-seq technology was still in the optimization stage.A retrospective study was conducted,aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technol-ogy.展开更多
Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopha...Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs.展开更多
This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A de...This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A detailed review of current deepwater platforms worldwide was performed through the examples of industry projects, and the pros and cons of each platform are discussed. Four types of platforms are currently used for the deepwater development: tension leg platform, Spar, semi-submersible platform, and the floating production system offloading. Among these, the TLP and Spar can be used for dry tree applications, and have gained popularity in recent years. The dry tree application enables the extension of the drilling application for fixed platforms into floating systems, and greatly reduces the cost and complexity of the subsea operation. Newly built wet tree semi-submersible production platforms for ultra deepwater are also getting their application, mainly due to the much needed payload for deepwater making the conversion of the old drilling semi-submersible platforms impossible. These platforms have been used in different fields around the world for different environments; each has its own advantages and disadvantages. There are many challenges with the successful use of these floating platforms. A lot of lessons have been learned and extensive experience accumulated through the many project applications. Key technologies are being reviewed for the successful use of floating platforms for field development, and potential future development needs are being discussed. Some of the technologies and experience of platform applications can be well used for the development of the South China Sea oil and gas field.展开更多
This essay analyzes the scientific evidence that forms the basis of bioactive materials,covering the fundamental understanding of bioactivity phenomena and correlation with the mechanisms of biocompatibility of biomat...This essay analyzes the scientific evidence that forms the basis of bioactive materials,covering the fundamental understanding of bioactivity phenomena and correlation with the mechanisms of biocompatibility of biomaterials.This is a detailed assessment of performance in areas such as bone-induction,cell adhesion,immunomodulation,thrombogenicity and antimicrobial behavior.Bioactivity is the modulation of biological activity by characteristics of the interfacial region that incorporates the material surface and the immediate local host tissue.Although the term‘bioactive material’is widely used and has a well understood general meaning,it would be useful now to concentrate on this interfacial region,considered as‘the bioactivity zone’.Bioactivity phenomena are either due to topographical/micromechanical characteristics,or to biologically active species that are presented in the bioactivity zone.Examples of topographical/micromechanical effects are the modulation of the osteoblast-osteoclast balance,nanotopographical regulation of cell adhesion,and bactericidal nanostructures.Regulation of bioactivity by biologically active species include their influence,especially of metal ions,on signaling pathways in bone formation,the role of cell adhesion molecules and bioactive peptides in cell attachment,macrophage polarization by immunoregulatory molecules and antimicrobial peptides.While much experimental data exists to demonstrate the potential of such phenomena,there are considerable barriers to their effective clinical translation.This essay shows that there is solid scientific evidence of the existence of bioactivity mechanisms that are associated with some types of biomaterials,especially when the material is modified in a manner designed to specifically induce that activity.展开更多
基金supported by the Key Research and Development Project of Zhejiang Province,China(No.2022C03026)the Zhejiang Medical and Health Technology Project(China)(No.2023RC274)Public Welfare Technology Application Research Program of Huzhou,China(No.2021GY15).
文摘With the rapid development of histological techniques and the widespread applica-tion of single-cell sequencing in eukaryotes,researchers desire to explore individual microbial.genotypes and functional expression,which deepens our understanding of microorganisms.In this review,the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well.Moreover,the characteristics of the currently emerging microbial single-cell sequencing(Microbe-seq)technology were summarized,and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status.Despite its mature development,the Microbe-seq technology was still in the optimization stage.A retrospective study was conducted,aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technol-ogy.
基金supported by the National Key Research & Development Program of China (2021YFE0113300)the National Natural Science Foundation of China (22078286 and 21878263)+1 种基金Zhejiang Universitythe Talent-Introduction Program of China for the Postdoctoral Researcher for the financial support。
文摘Process analytical technology(PAT) is gaining more interest in the biomanufacturing industry because of its potential to improve operational control and compliance through real-time quality assurance.Currently, biopharmaceutical producers mainly monitor chromatographic processes with ultraviolet/visible(UV/Vis) absorbance. However, this measurement has a very limited correlation with purity and quantity. The current study aims to determine the concentration of monoclonal antibody(mAb) and host cell proteins(HCPs) using a build-in UV/Vis monitoring during Protein A affinity chromatography and to optimize the separation conditions for high purity of mAb and minimizing the HCPs content. The eluate was analyzed through in-line UV/Vis at 280 and 410 nm, representing mAb and HCPs concentration,respectively. Each 0.1 column volume(CV) fraction of UV/Vis chromatogram peak area were calculated,and different separation conditions were then compared. The optimum conditions of mAb separation were found as 12 CV loading, elution at pH 3.5, and starting the collection at 0.5 CV point, resulting in high m Ab recovery of 95.92% and additional removal of 49.98% of HCP comparing with whole elution pool. This study concluded that UV/Vis-based in-line monitoring at 280 and 410 nm showed a high potential to optimize and real-time control Protein A affinity chromatography for mAb purification from HCPs.
文摘This paper studies the current available options for floating production platforms in developing deepwater oil fields and the potential development models of future oil and gas exploration in the South China Sea. A detailed review of current deepwater platforms worldwide was performed through the examples of industry projects, and the pros and cons of each platform are discussed. Four types of platforms are currently used for the deepwater development: tension leg platform, Spar, semi-submersible platform, and the floating production system offloading. Among these, the TLP and Spar can be used for dry tree applications, and have gained popularity in recent years. The dry tree application enables the extension of the drilling application for fixed platforms into floating systems, and greatly reduces the cost and complexity of the subsea operation. Newly built wet tree semi-submersible production platforms for ultra deepwater are also getting their application, mainly due to the much needed payload for deepwater making the conversion of the old drilling semi-submersible platforms impossible. These platforms have been used in different fields around the world for different environments; each has its own advantages and disadvantages. There are many challenges with the successful use of these floating platforms. A lot of lessons have been learned and extensive experience accumulated through the many project applications. Key technologies are being reviewed for the successful use of floating platforms for field development, and potential future development needs are being discussed. Some of the technologies and experience of platform applications can be well used for the development of the South China Sea oil and gas field.
文摘This essay analyzes the scientific evidence that forms the basis of bioactive materials,covering the fundamental understanding of bioactivity phenomena and correlation with the mechanisms of biocompatibility of biomaterials.This is a detailed assessment of performance in areas such as bone-induction,cell adhesion,immunomodulation,thrombogenicity and antimicrobial behavior.Bioactivity is the modulation of biological activity by characteristics of the interfacial region that incorporates the material surface and the immediate local host tissue.Although the term‘bioactive material’is widely used and has a well understood general meaning,it would be useful now to concentrate on this interfacial region,considered as‘the bioactivity zone’.Bioactivity phenomena are either due to topographical/micromechanical characteristics,or to biologically active species that are presented in the bioactivity zone.Examples of topographical/micromechanical effects are the modulation of the osteoblast-osteoclast balance,nanotopographical regulation of cell adhesion,and bactericidal nanostructures.Regulation of bioactivity by biologically active species include their influence,especially of metal ions,on signaling pathways in bone formation,the role of cell adhesion molecules and bioactive peptides in cell attachment,macrophage polarization by immunoregulatory molecules and antimicrobial peptides.While much experimental data exists to demonstrate the potential of such phenomena,there are considerable barriers to their effective clinical translation.This essay shows that there is solid scientific evidence of the existence of bioactivity mechanisms that are associated with some types of biomaterials,especially when the material is modified in a manner designed to specifically induce that activity.