In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some ...In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.展开更多
Rare earth-doped fibres are a diode-pumped,solid-state laser architecture that is highly scalable in average power.The performance of pulsed fibre laser systems is restricted due to nonlinear effects.Hence,fibre desig...Rare earth-doped fibres are a diode-pumped,solid-state laser architecture that is highly scalable in average power.The performance of pulsed fibre laser systems is restricted due to nonlinear effects.Hence,fibre designs that allow for very large mode areas at high average powers with diffraction-limited beam quality are of enormous interest.Ytterbium-doped,rod-type,large-pitch fibres(LPF)enable extreme fibre dimensions,i.e.,effective single-mode fibres with mode sizes exceeding 100 times the wavelength of the guided radiation,by exploiting the novel concept of delocalisation of higher-order transverse modes.The non-resonant nature of the operating principle makes LPF suitable for high power extraction.This design allows for an unparalleled level of performance in pulsed fibre lasers.展开更多
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe...This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.展开更多
In this paper,a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared,in which a calculation method is firstly proposed to optimize the number of channels to a minimum.The...In this paper,a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared,in which a calculation method is firstly proposed to optimize the number of channels to a minimum.The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating,whereas there is no need to deliberately optimize the fabrication process.It is revealed that a discrete 2D angle deflection range of±30°is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55%with a root-meansquare deviation of less than 3.4%in the same grating.The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°.It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.展开更多
The eXawatt Center for Extreme Light Studies project aimed to create a large scientific infrastructure based on lasers with giant peak power.The project relies on the significant progress achieved in the last decade.T...The eXawatt Center for Extreme Light Studies project aimed to create a large scientific infrastructure based on lasers with giant peak power.The project relies on the significant progress achieved in the last decade.The planned infrastructure will incorporate a unique light source with a pulse power of 600 PW using optical parametric chirped pulse amplification in large-aperture KD_(2)PO_(4),deuterated potassium dihydrogen phosphate crystals.The interaction of such laser radiation with matter represents a completely new fundamental physics.The direct study of the space-time structure of vacuums and other unknown phenomena at the frontier of high-energy physics and the physics of superstrong fields will be challenged.Expected applications will include the development of compact particle accelerators,the generation of ultrashort pulses of hard X-ray and gamma radiation for material science enabling one to probe material samples with unprecedented spatial and temporal resolution,the development of new radiation and particle sources,etc.The paper is translation from Russian[Kvantovaya Elektronika 53,95(2023)].展开更多
The first demonstration of laser action in ruby was made in 1960 by T.H.Maiman of Hughes Research Laboratories,USA.Many laboratories worldwide began the search for lasers using different materials,operating at differe...The first demonstration of laser action in ruby was made in 1960 by T.H.Maiman of Hughes Research Laboratories,USA.Many laboratories worldwide began the search for lasers using different materials,operating at different wavelengths.In the UK,academia,industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications.This historical review looks at the contribution the UK has made to the advancement of the technology,the development of systems and components and their exploitation over the last 60 years.展开更多
The next generation of high-power lasers enables repetition of experiments at orders of magnitude higher frequency than what was possible using the prior generation.Facilities requiring human intervention between lase...The next generation of high-power lasers enables repetition of experiments at orders of magnitude higher frequency than what was possible using the prior generation.Facilities requiring human intervention between laser repetitions need to adapt in order to keep pace with the new laser technology.A distributed networked control system can enable laboratory-wide automation and feedback control loops.These higher-repetition-rate experiments will create enormous quantities of data.A consistent approach to managing data can increase data accessibility,reduce repetitive data-software development and mitigate poorly organized metadata.An opportunity arises to share knowledge of improvements to control and data infrastructure currently being undertaken.We compare platforms and approaches to state-of-the-art control systems and data management at high-power laser facilities,and we illustrate these topics with case studies from our community.展开更多
Porous materials have many applications for laser–matter interaction experiments related to inertial confinement fusion.Obtaining new knowledge about the properties of the laser-produced plasma of porous media is a c...Porous materials have many applications for laser–matter interaction experiments related to inertial confinement fusion.Obtaining new knowledge about the properties of the laser-produced plasma of porous media is a challenging task.In this work,we report,for the first time to the best of our knowledge,the time-dependent measurement of the reflected light of a terawatt laser pulse from the laser-produced plasma of low-Z foam material of overcritical density.The experiments have been performed with the ABC laser,with targets constituted by foam of overcritical density and by solid media of the same chemical composition.We implemented in the MULTI-FM code a model for the light reflection to reproduce and interpret the experimental results.Using the simulations together with the experimental results,we indicate a criterion for estimating the homogenization time of the laser-produced plasma,whose measurement is challenging with direct diagnostic techniques and still not achieved.展开更多
Controlling the delivery of multi-terawatt and petawatt laser pulses to final focus,both in position and angle,is critical to many laser applications such as optical guiding,laser–plasma acceleration,and laser-produc...Controlling the delivery of multi-terawatt and petawatt laser pulses to final focus,both in position and angle,is critical to many laser applications such as optical guiding,laser–plasma acceleration,and laser-produced secondary radiation.We present an online,non-destructive laser diagnostic,capable of measuring the transverse position and pointing angle at focus.The diagnostic is based on a unique double-surface-coated wedged-mirror design for the final steering optic in the laser line,producing a witness beam highly correlated with the main beam.By propagating low-power kilohertz pulses to focus,we observed spectra of focus position and pointing angle fluctuations dominated by frequencies below 70 Hz.The setup was also used to characterize the excellent position and pointing angle correlation of the 1 Hz high-power laser pulses to this low-power kilohertz pulse train,opening a promising path to fast non-perturbative feedback concepts even on few-hertz-class high-power laser systems.展开更多
文摘In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.
基金The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme(FP7/2007-2013)/ERC Grant Agreement No.[240460]the Thuringian Ministry of Education,Science and Culture under contract PE203-2-1(MOFA)and contract B514-10061(Green Photonics).FJ acknowledges financial support from the Abbe School of Photonics.
文摘Rare earth-doped fibres are a diode-pumped,solid-state laser architecture that is highly scalable in average power.The performance of pulsed fibre laser systems is restricted due to nonlinear effects.Hence,fibre designs that allow for very large mode areas at high average powers with diffraction-limited beam quality are of enormous interest.Ytterbium-doped,rod-type,large-pitch fibres(LPF)enable extreme fibre dimensions,i.e.,effective single-mode fibres with mode sizes exceeding 100 times the wavelength of the guided radiation,by exploiting the novel concept of delocalisation of higher-order transverse modes.The non-resonant nature of the operating principle makes LPF suitable for high power extraction.This design allows for an unparalleled level of performance in pulsed fibre lasers.
基金the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014–2018 and 2019– 2020 under grant agreement No. 633053the ELI Beamlines Projects LQ1606 and 19-02545S with financial support from the Czech Science Foundation and the Ministry of Education, Youth and Sports of the Czech Republic+6 种基金support from the European Regional Development Fund, the project ELITAS CZ.02.1.01/0.0/0.0/16 013/0001793the National Programme of ‘Sustainability Ⅱ’ and ELI phase 2 CZ.02.1.01/0.0/0.0/15008/0000162The PETAL project was designed and built by the CEA under the financial auspices of the Region Nouvelle Aquitaine, the French Government and the European Unionsupported by EPSRC grants EP/K022415/1 and EP/R006202supported by the European Cluster of Advanced Laser Light Sources, EUCALL, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654220funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 Laserlab-Europethe use of the EPOCH PIC code (developed under EPSRC grant EP/G054940/1).
文摘This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.
基金supported by the National Key R&D Program of China(No.2020YFA0714500)the Shanghai Strategic Emerging Industry Development Special Fund(No.31011442501217020191D3101001)+1 种基金the National Natural Science Foundation of China(Nos.61875212 and U1831211)the International Partnership Program of Chinese Academy of Sciences(No.181231KYSB20200040)
文摘In this paper,a 2D angle amplifier based on peristrophic multiplexed volume Bragg gratings is designed and prepared,in which a calculation method is firstly proposed to optimize the number of channels to a minimum.The induction of peristrophic multiplexing reduces the performance difference in one bulk of the grating,whereas there is no need to deliberately optimize the fabrication process.It is revealed that a discrete 2D angle deflection range of±30°is obtained and the relative diffraction efficiency of all the grating channels reaches more than 55%with a root-meansquare deviation of less than 3.4%in the same grating.The deviation of the Bragg incidence and exit angles from the expected values is less than 0.07°.It is believed that the proposed 2D angle amplifier has the potential to realize high-performance and large-angle beam steering in high-power laser beam scanning systems.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(Project No.0030-2021-0015)
文摘The eXawatt Center for Extreme Light Studies project aimed to create a large scientific infrastructure based on lasers with giant peak power.The project relies on the significant progress achieved in the last decade.The planned infrastructure will incorporate a unique light source with a pulse power of 600 PW using optical parametric chirped pulse amplification in large-aperture KD_(2)PO_(4),deuterated potassium dihydrogen phosphate crystals.The interaction of such laser radiation with matter represents a completely new fundamental physics.The direct study of the space-time structure of vacuums and other unknown phenomena at the frontier of high-energy physics and the physics of superstrong fields will be challenged.Expected applications will include the development of compact particle accelerators,the generation of ultrashort pulses of hard X-ray and gamma radiation for material science enabling one to probe material samples with unprecedented spatial and temporal resolution,the development of new radiation and particle sources,etc.The paper is translation from Russian[Kvantovaya Elektronika 53,95(2023)].
文摘The first demonstration of laser action in ruby was made in 1960 by T.H.Maiman of Hughes Research Laboratories,USA.Many laboratories worldwide began the search for lasers using different materials,operating at different wavelengths.In the UK,academia,industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications.This historical review looks at the contribution the UK has made to the advancement of the technology,the development of systems and components and their exploitation over the last 60 years.
基金A.J.acknowledges the support from DOE Grant#DESC0016804.
文摘The next generation of high-power lasers enables repetition of experiments at orders of magnitude higher frequency than what was possible using the prior generation.Facilities requiring human intervention between laser repetitions need to adapt in order to keep pace with the new laser technology.A distributed networked control system can enable laboratory-wide automation and feedback control loops.These higher-repetition-rate experiments will create enormous quantities of data.A consistent approach to managing data can increase data accessibility,reduce repetitive data-software development and mitigate poorly organized metadata.An opportunity arises to share knowledge of improvements to control and data infrastructure currently being undertaken.We compare platforms and approaches to state-of-the-art control systems and data management at high-power laser facilities,and we illustrate these topics with case studies from our community.
基金funded from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement number 633053。
文摘Porous materials have many applications for laser–matter interaction experiments related to inertial confinement fusion.Obtaining new knowledge about the properties of the laser-produced plasma of porous media is a challenging task.In this work,we report,for the first time to the best of our knowledge,the time-dependent measurement of the reflected light of a terawatt laser pulse from the laser-produced plasma of low-Z foam material of overcritical density.The experiments have been performed with the ABC laser,with targets constituted by foam of overcritical density and by solid media of the same chemical composition.We implemented in the MULTI-FM code a model for the light reflection to reproduce and interpret the experimental results.Using the simulations together with the experimental results,we indicate a criterion for estimating the homogenization time of the laser-produced plasma,whose measurement is challenging with direct diagnostic techniques and still not achieved.
基金the U.S.Department of Energy(DOE),Office of Science,the Office of Basic Energy Sciences,and the Office of High Energy Physics,under Contract No.DE-AC02-05CH11231the Gordon and Betty Moore Foundation under Grant No.GBMF4898.
文摘Controlling the delivery of multi-terawatt and petawatt laser pulses to final focus,both in position and angle,is critical to many laser applications such as optical guiding,laser–plasma acceleration,and laser-produced secondary radiation.We present an online,non-destructive laser diagnostic,capable of measuring the transverse position and pointing angle at focus.The diagnostic is based on a unique double-surface-coated wedged-mirror design for the final steering optic in the laser line,producing a witness beam highly correlated with the main beam.By propagating low-power kilohertz pulses to focus,we observed spectra of focus position and pointing angle fluctuations dominated by frequencies below 70 Hz.The setup was also used to characterize the excellent position and pointing angle correlation of the 1 Hz high-power laser pulses to this low-power kilohertz pulse train,opening a promising path to fast non-perturbative feedback concepts even on few-hertz-class high-power laser systems.