利用调节型共源共栅电路结构(RGC)可以使跨阻放大器得到较高的带宽,并且通过级联并联-并联负反馈电路可以使增益得到提高。采用0.5μm的标准互补型金属氧化物半导体(CMOS)工艺进行设计,仿真。测试结果表明,该电路具有69.93 d B的跨阻增...利用调节型共源共栅电路结构(RGC)可以使跨阻放大器得到较高的带宽,并且通过级联并联-并联负反馈电路可以使增益得到提高。采用0.5μm的标准互补型金属氧化物半导体(CMOS)工艺进行设计,仿真。测试结果表明,该电路具有69.93 d B的跨阻增益,830 MHz的-3 dB带宽。在输入电流为1μA时,其输出电压的动态摆幅达到4.5 mV,在5 V电源电压下功耗仅为63.16 mW。展开更多
压电激振器是超声导波无损检测应用中的关键部件,针对激振器对压电驱动电源高带宽和大功率的要求,设计并研制了一种基于高压运放MP108的压电陶瓷驱动电源。采用直接数字频率合成技术产生信号源,信号经过前级放大和滤波后输入到高压运放...压电激振器是超声导波无损检测应用中的关键部件,针对激振器对压电驱动电源高带宽和大功率的要求,设计并研制了一种基于高压运放MP108的压电陶瓷驱动电源。采用直接数字频率合成技术产生信号源,信号经过前级放大和滤波后输入到高压运放电路驱动压电陶瓷。分析了大功率驱动电源的散热问题,指出驱动电源散热片到空气的最大热阻为1.1℃/W。实验结果表明,当负载为10 nf时,驱动电源在10~300 k Hz的频带范围内能够实现100Vp-p的放大输出,基本满足超声导波压电激振器的驱动要求。展开更多
Electro-optic(EO) ring resonator modulators have a number of communications and scientific applications, including analog optical links, optical signal processing, and frequency comb generation. Among the EO materials...Electro-optic(EO) ring resonator modulators have a number of communications and scientific applications, including analog optical links, optical signal processing, and frequency comb generation. Among the EO materials used to fabricate ring modulators, the EO polymer has many promising characteristics, including a high EO coefficient of 100–200 pm/V(3–7 times larger than that of Li Nb O3), an ultrafast EO response time(< 10 fs), a low dielectric constant(3 to 4) with very little dispersion up to at least 250 GHz, and a straightforward spin-coating fabrication process. These inherent characteristics will be able to combine excellent EO properties with simple processing in achieving exceptional performance in a variety of high-speed optical modulation and sensing devices. This review focuses on the research and recent development of ring resonator modulators based on EO polymers. The first part describes the operation principle of EO ring resonator modulators, such as modulation mechanism, EO tunability, and 3 d B bandwidth. Subsequently, the emphasis is placed on the discussion of the ring modulators with EO polymers as the waveguide core and the improvement of EO modulation by using an EO polymer/titanium dioxide hybrid core. At the end, a series of EO polymers on silicon platforms including slot modulators, etching-free modulators, and athermal modulators are reviewed.展开更多
A novel high-bandwidth, high-sensitivity differential optical receiver without any additional cost compared to general optical receivers, is proposed for high-speed optical communications and interconnections. High ba...A novel high-bandwidth, high-sensitivity differential optical receiver without any additional cost compared to general optical receivers, is proposed for high-speed optical communications and interconnections. High bandwidth and high sensitivity are achieved through a fully differential transimpedance amplifier with balanced input loads and two photodetectors to convert the incident light into a pair of differential photogenerated currents,respectively. In addition,a corresponding 0.35μm standard CMOS optoelectronic integrated receiver with two 60μm × 30μm, 1. 483pF fingered p^+/n- well/p-substrate photodiodes is also presented. The simulation results demonstrate that it achieves a 1.37GHz bandwidth and a 81.9dBΩ transimpedance gain,supporting data rates up to at least 2Gbit/s. The device consumes a core area of 0. 198mm^2 and the optical sensitivity is at least - 13dBm for a 10^-12 bit error rate under a 2^15 - 1 PRBS input signal.展开更多
Typically,the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first,lightly-damped resonance.To overcome this issue,a variety of open-and closed-loop control techniques t...Typically,the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first,lightly-damped resonance.To overcome this issue,a variety of open-and closed-loop control techniques that commonly combine damping and tracking actions,have been reported in literature.However,in almost all these cases,the achievable closed-loop bandwidth is still limited by the original open-loop resonant frequency of the respective positioning axis.Shifting this resonance to a higher frequency would undoubtedly result in a wider bandwidth.However,such a shift typically entails a major mechanical redesign of the nanopositioner.The integral resonant control(IRC)has been reported earlier to demonstrate the significant performance enhancement,robustness to parameter uncertainty,gua-ranteed stability and design flexibility it affords.To further exploit the IRC scheme’s capabilities,this paper presents a method of actively shifting the resonant frequency of a nanopositioner’s axis,thereby delivering a wider closed-loop positioning bandwidth when controlled with the IRC scheme.The IRC damping control is augmented with a standard integral tracking controller to improve positioning accuracy.And both damping and tracking control parameters are analytically optimized to result in a Butterworth Filter mimicking pole-placement—maximally flat passband response.Experiments are conducted on a nanopositioner’s axis with an open-loop resonance at 508 Hz.It is shown that by employing the active resonance shifting,the closed-loop positioning bandwidth is increased from 73 to 576 Hz.Consequently,the root-mean-square tracking errors for a 100 Hz triangular trajectory are reduced by 93%.展开更多
文摘压电激振器是超声导波无损检测应用中的关键部件,针对激振器对压电驱动电源高带宽和大功率的要求,设计并研制了一种基于高压运放MP108的压电陶瓷驱动电源。采用直接数字频率合成技术产生信号源,信号经过前级放大和滤波后输入到高压运放电路驱动压电陶瓷。分析了大功率驱动电源的散热问题,指出驱动电源散热片到空气的最大热阻为1.1℃/W。实验结果表明,当负载为10 nf时,驱动电源在10~300 k Hz的频带范围内能够实现100Vp-p的放大输出,基本满足超声导波压电激振器的驱动要求。
基金supported by the National Natural Science Foundation of China (No. 62075184)。
文摘Electro-optic(EO) ring resonator modulators have a number of communications and scientific applications, including analog optical links, optical signal processing, and frequency comb generation. Among the EO materials used to fabricate ring modulators, the EO polymer has many promising characteristics, including a high EO coefficient of 100–200 pm/V(3–7 times larger than that of Li Nb O3), an ultrafast EO response time(< 10 fs), a low dielectric constant(3 to 4) with very little dispersion up to at least 250 GHz, and a straightforward spin-coating fabrication process. These inherent characteristics will be able to combine excellent EO properties with simple processing in achieving exceptional performance in a variety of high-speed optical modulation and sensing devices. This review focuses on the research and recent development of ring resonator modulators based on EO polymers. The first part describes the operation principle of EO ring resonator modulators, such as modulation mechanism, EO tunability, and 3 d B bandwidth. Subsequently, the emphasis is placed on the discussion of the ring modulators with EO polymers as the waveguide core and the improvement of EO modulation by using an EO polymer/titanium dioxide hybrid core. At the end, a series of EO polymers on silicon platforms including slot modulators, etching-free modulators, and athermal modulators are reviewed.
文摘A novel high-bandwidth, high-sensitivity differential optical receiver without any additional cost compared to general optical receivers, is proposed for high-speed optical communications and interconnections. High bandwidth and high sensitivity are achieved through a fully differential transimpedance amplifier with balanced input loads and two photodetectors to convert the incident light into a pair of differential photogenerated currents,respectively. In addition,a corresponding 0.35μm standard CMOS optoelectronic integrated receiver with two 60μm × 30μm, 1. 483pF fingered p^+/n- well/p-substrate photodiodes is also presented. The simulation results demonstrate that it achieves a 1.37GHz bandwidth and a 81.9dBΩ transimpedance gain,supporting data rates up to at least 2Gbit/s. The device consumes a core area of 0. 198mm^2 and the optical sensitivity is at least - 13dBm for a 10^-12 bit error rate under a 2^15 - 1 PRBS input signal.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.U2013211 and 51975375)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,China(Grant No.GZKF-202003)the Binks Trust Visiting Research Fellowship(2018),University of Aberdeen,UK,awarded to Dr.Sumeet S.Aphale.
文摘Typically,the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first,lightly-damped resonance.To overcome this issue,a variety of open-and closed-loop control techniques that commonly combine damping and tracking actions,have been reported in literature.However,in almost all these cases,the achievable closed-loop bandwidth is still limited by the original open-loop resonant frequency of the respective positioning axis.Shifting this resonance to a higher frequency would undoubtedly result in a wider bandwidth.However,such a shift typically entails a major mechanical redesign of the nanopositioner.The integral resonant control(IRC)has been reported earlier to demonstrate the significant performance enhancement,robustness to parameter uncertainty,gua-ranteed stability and design flexibility it affords.To further exploit the IRC scheme’s capabilities,this paper presents a method of actively shifting the resonant frequency of a nanopositioner’s axis,thereby delivering a wider closed-loop positioning bandwidth when controlled with the IRC scheme.The IRC damping control is augmented with a standard integral tracking controller to improve positioning accuracy.And both damping and tracking control parameters are analytically optimized to result in a Butterworth Filter mimicking pole-placement—maximally flat passband response.Experiments are conducted on a nanopositioner’s axis with an open-loop resonance at 508 Hz.It is shown that by employing the active resonance shifting,the closed-loop positioning bandwidth is increased from 73 to 576 Hz.Consequently,the root-mean-square tracking errors for a 100 Hz triangular trajectory are reduced by 93%.