Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this...Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this paper is to provide an overview of recent advances in guided crowd evacuation. Different guided crowd evacuation approaches are classified according to guidance approaches and technologies. A comprehensive analysis and comparison of crowd evacuation with static signage, dynamic signage, trained leader, mobile devices, mobile robot and wireless sensor networks are presented based on a single guidance mode perspective. In addition, the different evacuation guidance systems that use high-tech means such as advanced intelligent monitoring techniques, AI techniques, computer technology and intelligent inducing algorithms are reviewed from a system’s perspective. Future researches in the area of crowd evacuation are also discussed.展开更多
Intermediate charging and sudden failure of automatic guided vehicles(AGVs)interrupt and severely affect the stability and efficiency of scheduling.Therefore,an AGV scheduling approach considering equipment failure an...Intermediate charging and sudden failure of automatic guided vehicles(AGVs)interrupt and severely affect the stability and efficiency of scheduling.Therefore,an AGV scheduling approach considering equipment failure and power management is proposed for outfitting warehouses.First,a power consumption model is established for AGVs performing transportation tasks.The powers for departure and task consumption are used to calculate the AGV charging and return times.Second,an optimization model for AGV scheduling is established to minimize the total transportation time.Different conditions are defined for the overhaul and minor repair of AGVs,and a scheduling strategy for responding to sudden failure is proposed.Finally,an algorithm is developed to solve the optimization model for a case study.The method can be used to plan the charging time and perform rescheduling under sudden failure to improve the robustness and dynamic response capability of AGVs.展开更多
基金supported jointly by the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(RCS2019ZK001)Fundamental Research Funds for Central Universities(2019JBM079)Postdoctoral Innovative Talent Project(BX20190029)
文摘Evacuation leaders and/or equipment provide route and exit information for people and guide them to the expected destinations, which could make crowd evacuation more efficient in case of emergency. The purpose of this paper is to provide an overview of recent advances in guided crowd evacuation. Different guided crowd evacuation approaches are classified according to guidance approaches and technologies. A comprehensive analysis and comparison of crowd evacuation with static signage, dynamic signage, trained leader, mobile devices, mobile robot and wireless sensor networks are presented based on a single guidance mode perspective. In addition, the different evacuation guidance systems that use high-tech means such as advanced intelligent monitoring techniques, AI techniques, computer technology and intelligent inducing algorithms are reviewed from a system’s perspective. Future researches in the area of crowd evacuation are also discussed.
基金Supported by the China High-Tech Ship Project of the Ministry of Industry and Information Technology under Grant No.[2019]360.
文摘Intermediate charging and sudden failure of automatic guided vehicles(AGVs)interrupt and severely affect the stability and efficiency of scheduling.Therefore,an AGV scheduling approach considering equipment failure and power management is proposed for outfitting warehouses.First,a power consumption model is established for AGVs performing transportation tasks.The powers for departure and task consumption are used to calculate the AGV charging and return times.Second,an optimization model for AGV scheduling is established to minimize the total transportation time.Different conditions are defined for the overhaul and minor repair of AGVs,and a scheduling strategy for responding to sudden failure is proposed.Finally,an algorithm is developed to solve the optimization model for a case study.The method can be used to plan the charging time and perform rescheduling under sudden failure to improve the robustness and dynamic response capability of AGVs.