Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interfer- ences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtrem...Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interfer- ences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array sur- vey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplifi- cation ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a compli- cated distribution of the maximum amplitudes of accelera- tion waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak ampli- tude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplifi- cation effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the bedrock are necessary for the urba展开更多
Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dro...Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.展开更多
文摘Influences on the ground motion simulations by soil amplification effects and multiple seismic wave interfer- ences in the heterogeneous medium are investigated. Detailed velocity structure obtained from the microtremor array sur- vey is adopted in the ground motion simulation. Analyses for amplification ratios of core samples of ten drill holes with 40 m deep in the sedimentary layers show that the soil amplifi- cation ratio influences nonlinearly the seismic ground motion. Based on the above analysis results, the ground motion in the heavily damaged zone in the Japanese Kobe earthquake of 1995 is simulated in a digital SH seismic wave model by using the pseudospectral method with the staggered grid RFFT differentiation (SGRFFTD). The simulated results suggest that the heterogeneous velocity structure results in a compli- cated distribution of the maximum amplitudes of accelera- tion waveforms with multiple peaks at the surface. Spatial distribution of the maximum amplitudes coincides well with that of collapse ratios of buildings in Kobe. The dual peaks of the collapse ratios away from the earthquake fault coincide well with the double peak amplitudes of simulated seismic acceleration waves also. The cause for the first peak ampli- tude of the ground motion is attributable to the interference of the secondary surface wave from the bedrock propagating horizontally along the surface sedimentary layer and the body wave from the basin bottom according to analyses of wave snapshots propagating in inhomogeneous structure of the Osaka group layers. The second peak amplitude of the ground motion may be attributive to the interference of the secondary surface wave from the tunneling waves in the shallow sediments and the body wave. It is important for the study on complicated distributions of earthquake damages to investigate influences on the ground motion by soil amplifi- cation effects and multiple seismic wave interferences due to the structure. Explorations of the structure to the bedrock are necessary for the urba
基金jointly sponsored by “The Ground Motion Attenuation Relationship Based on Seismology and Its Practicability” of the National Natural Science Foundation of China(51178434)“With Digital Ride Network Small Earthquake Records to Establish Regional Strong Ground Motion Attenuation Relations”from the National Natural Science Foundation of China(51478443)“Based on the Regional Parameters of Mixed Ground Motion Attenuation Relationship”from the National Natural Science Foundation of China(51678540)
文摘Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.