灰狼优化(Grey Wolf Optimization,GWO)算法是一种新兴的群体智能优化算法,因简单高效而被成功应用于诸多领域。文章阐述了灰狼优化算法的搜索机制和实现过程,分析灰狼优化算法的特性,对目前GWO算法的相关改进及应用进行综述。重点对GW...灰狼优化(Grey Wolf Optimization,GWO)算法是一种新兴的群体智能优化算法,因简单高效而被成功应用于诸多领域。文章阐述了灰狼优化算法的搜索机制和实现过程,分析灰狼优化算法的特性,对目前GWO算法的相关改进及应用进行综述。重点对GWO算法的改进策略,包括种群初始化的改进、搜索机制的改进、参数的改进等进行了描述,对GWO算法在参数优化、复杂函数优化和组合优化等方面的应用进行了讨论。最后,对GWO算法的未来改进策略和实际应用进行了展望。展开更多
针对基本灰狼算法易陷入局部最优、未考虑个体自身经验等问题,本文提出一种基于Tent映射的混合灰狼优化算法(grey wolf optimization algorithm based on particle swarm optimization,简称PSO_GWO).首先,其通过Tent混沌映射产生初始种...针对基本灰狼算法易陷入局部最优、未考虑个体自身经验等问题,本文提出一种基于Tent映射的混合灰狼优化算法(grey wolf optimization algorithm based on particle swarm optimization,简称PSO_GWO).首先,其通过Tent混沌映射产生初始种群,增加种群个体的多样性;其次,采用非线性控制参数,前期递减速度慢,能够增加全局搜索能力,避免算法陷入局部最优,后期收敛因子递减速度快,增加算法局部搜索能力,从而提高整体收敛速度;最后,引入粒子群算法的思想,将个体自身经历过最优值与种群最优值相结合来更新灰狼个体的位置信息,从而保留灰狼个体自身最佳位置信息.为验证该算法的有效性,本文借助9个标准测试函数来与其他三种算法进行对比.实验结果表明,本文提出的算法比其他三种算法在单峰函数和多峰函数上搜索到的最优解更加理想; PSO_GWO算法比IGWO算法(the improved grey wolf optimization algorithm)在计算时间复杂度方面效果较好;同时,随着种群规模增大,PSO_GWO算法收敛值逐渐接近理想值.因此,本文提出的PSO_GWO算法能更快搜索到全局最优解,且鲁棒性更好.展开更多
在标准灰狼优化算法寻优的中后期,由于衰减因子减小,灰狼群体中的个体均向领导层灰狼所在区域靠近,导致算法的全局寻优能力差,降低了寻优精度。针对该问题,提出了一种改进灰狼优化算法(Improved Grey Wolf Optimization,IGWO)。该算法...在标准灰狼优化算法寻优的中后期,由于衰减因子减小,灰狼群体中的个体均向领导层灰狼所在区域靠近,导致算法的全局寻优能力差,降低了寻优精度。针对该问题,提出了一种改进灰狼优化算法(Improved Grey Wolf Optimization,IGWO)。该算法首先分析了衰减因子对灰狼算法(Grey Wolf Optimization,GWO)的影响,提出了一种分段可调节衰减因子,用于平衡算法的勘探能力与开发能力。其可以根据不同优化问题来寻找适当的参数,实现更高精度的寻优,并且保证了在寻优过程的中后期,算法也具有一定的全局搜索能力。数值仿真实验表明,提高勘探比例有利于提高算法的收敛精度。同时,在寻优过程中,根据概率选择对领导层灰狼分别进行莱维飞行操作或随机游动操作。利用莱维飞行短距离搜索与偶尔较长距离行走相间的搜索特点,提高算法的全局寻优能力;利用随机游动相对集中的搜索特性,提高局部寻优能力。最后,对8个标准测试函数进行仿真实验,并与其他几种算法进行比较,实验结果表明,所提算法在寻优精度、算法稳定性及收敛速度上都有较大优势。展开更多
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数...灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。展开更多
针对无线传感器网络传统距离-矢量(DV-Hop)算法中最小二乘法估计误差过大的问题,提出了一种改进灰狼优化(Grey Wolf Optimization,GWO)算法与DV-Hop融合的算法。首先,利用传统的DV-Hop算法估算出信标节点与各未知节点间的距离。其次,用...针对无线传感器网络传统距离-矢量(DV-Hop)算法中最小二乘法估计误差过大的问题,提出了一种改进灰狼优化(Grey Wolf Optimization,GWO)算法与DV-Hop融合的算法。首先,利用传统的DV-Hop算法估算出信标节点与各未知节点间的距离。其次,用具有自适应策略的改进GWO算法代替最小二乘法来估算未知节点的位置,所做改进包括初始化狼群个体时引入佳点集,以提高初始种群的遍历性;为了加快种群位置的更新速度,对控制参数a采取自适应调整策略,并根据α,β和σ的适应度值加权更新种群位置。最后,采取镜像策略对估算出的越界节点进行处理。实验结果表明,相比于传统DV-Hop算法、文献[1]的算法和文献[2]的算法,所提算法的定位精度更高,稳定性更好。展开更多
文摘灰狼优化(Grey Wolf Optimization,GWO)算法是一种新兴的群体智能优化算法,因简单高效而被成功应用于诸多领域。文章阐述了灰狼优化算法的搜索机制和实现过程,分析灰狼优化算法的特性,对目前GWO算法的相关改进及应用进行综述。重点对GWO算法的改进策略,包括种群初始化的改进、搜索机制的改进、参数的改进等进行了描述,对GWO算法在参数优化、复杂函数优化和组合优化等方面的应用进行了讨论。最后,对GWO算法的未来改进策略和实际应用进行了展望。
文摘针对基本灰狼算法易陷入局部最优、未考虑个体自身经验等问题,本文提出一种基于Tent映射的混合灰狼优化算法(grey wolf optimization algorithm based on particle swarm optimization,简称PSO_GWO).首先,其通过Tent混沌映射产生初始种群,增加种群个体的多样性;其次,采用非线性控制参数,前期递减速度慢,能够增加全局搜索能力,避免算法陷入局部最优,后期收敛因子递减速度快,增加算法局部搜索能力,从而提高整体收敛速度;最后,引入粒子群算法的思想,将个体自身经历过最优值与种群最优值相结合来更新灰狼个体的位置信息,从而保留灰狼个体自身最佳位置信息.为验证该算法的有效性,本文借助9个标准测试函数来与其他三种算法进行对比.实验结果表明,本文提出的算法比其他三种算法在单峰函数和多峰函数上搜索到的最优解更加理想; PSO_GWO算法比IGWO算法(the improved grey wolf optimization algorithm)在计算时间复杂度方面效果较好;同时,随着种群规模增大,PSO_GWO算法收敛值逐渐接近理想值.因此,本文提出的PSO_GWO算法能更快搜索到全局最优解,且鲁棒性更好.
文摘在标准灰狼优化算法寻优的中后期,由于衰减因子减小,灰狼群体中的个体均向领导层灰狼所在区域靠近,导致算法的全局寻优能力差,降低了寻优精度。针对该问题,提出了一种改进灰狼优化算法(Improved Grey Wolf Optimization,IGWO)。该算法首先分析了衰减因子对灰狼算法(Grey Wolf Optimization,GWO)的影响,提出了一种分段可调节衰减因子,用于平衡算法的勘探能力与开发能力。其可以根据不同优化问题来寻找适当的参数,实现更高精度的寻优,并且保证了在寻优过程的中后期,算法也具有一定的全局搜索能力。数值仿真实验表明,提高勘探比例有利于提高算法的收敛精度。同时,在寻优过程中,根据概率选择对领导层灰狼分别进行莱维飞行操作或随机游动操作。利用莱维飞行短距离搜索与偶尔较长距离行走相间的搜索特点,提高算法的全局寻优能力;利用随机游动相对集中的搜索特性,提高局部寻优能力。最后,对8个标准测试函数进行仿真实验,并与其他几种算法进行比较,实验结果表明,所提算法在寻优精度、算法稳定性及收敛速度上都有较大优势。
文摘灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。
文摘针对无线传感器网络传统距离-矢量(DV-Hop)算法中最小二乘法估计误差过大的问题,提出了一种改进灰狼优化(Grey Wolf Optimization,GWO)算法与DV-Hop融合的算法。首先,利用传统的DV-Hop算法估算出信标节点与各未知节点间的距离。其次,用具有自适应策略的改进GWO算法代替最小二乘法来估算未知节点的位置,所做改进包括初始化狼群个体时引入佳点集,以提高初始种群的遍历性;为了加快种群位置的更新速度,对控制参数a采取自适应调整策略,并根据α,β和σ的适应度值加权更新种群位置。最后,采取镜像策略对估算出的越界节点进行处理。实验结果表明,相比于传统DV-Hop算法、文献[1]的算法和文献[2]的算法,所提算法的定位精度更高,稳定性更好。