采用种子生长法制备金纳米棒(AuNRs)以构建光学传感器,用于Fe^(3+)和Cu^(2+)的高选择性快速可视化检测。在酸性环境中,Fe^(3+)和Cu^(2+)通过与KI溶液反应,将I-氧化成I2。I2刻蚀AuNRs,导致其纵向表面等离子体共振(LSPR)吸收峰蓝移,从而...采用种子生长法制备金纳米棒(AuNRs)以构建光学传感器,用于Fe^(3+)和Cu^(2+)的高选择性快速可视化检测。在酸性环境中,Fe^(3+)和Cu^(2+)通过与KI溶液反应,将I-氧化成I2。I2刻蚀AuNRs,导致其纵向表面等离子体共振(LSPR)吸收峰蓝移,从而实现对Fe^(3+)和Cu^(2+)的检测。结果表明,反应温度为50℃时,添加0.8 mL 0.1 mol·L^(-1)HCl、2 mL AuNRs生长液和20 mmol·L^(-1)KI溶液,与2 mL 500μmol·L^(-1)Fe^(3+)或30μmol·L^(-1)Cu^(2+)反应25或90 min,可将AuNRs刻蚀至LSPR吸收峰消失。该方法对Fe^(3+)和Cu^(2+)检测具有高选择性和准确性,对于Fe^(3+)、Cu^(2+)共存体系的检测,可通过加入适量F-与Fe^(3+)生成配合物[FeF_(6)]^(3-)完成对Fe^(3+)的化学掩蔽,消除Fe^(3+)的干扰,实现共存体系中Cu^(2+)的准确检测。展开更多
Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties g...Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.展开更多
Direct evidence of effects of surface plasmon resonance(SPR) of gold naaorods(GNRs) on dual-band light absorption enhancement with coupling dye molecules was reported by introducing gold nanorod@SiO2(GNR@SiO2) c...Direct evidence of effects of surface plasmon resonance(SPR) of gold naaorods(GNRs) on dual-band light absorption enhancement with coupling dye molecules was reported by introducing gold nanorod@SiO2(GNR@SiO2) core-shell nanoparticles into a photoelectric conversion system. GNR with asymmetric shape had unusual anisotropic SPR[transversal surface plasmon resonance(TSPR) and longitudinal surface plasmon resonance(LSPR)]. The excel- lent SPR of GNR made it a promising candidate as enhancing light absorption material to increase power conversion efflciency(PCE). The PCE was improved nearly 17.2% upon incorporating GNRs, mostly due to the increase in Jsc, while Vo~ and FF were unchanged. The improvement was mostly contributed by the SPR of the GNRs with coupling of N719. And there was also a complementary to N719 in visible light range. Therefore, SPR is an effective tool in improving the photocurrent and consequently enhancement of PCE. The TSPR and LSPR effects of GNRs on light harvesting were reflected in the increased monochromatic incident photon-to-electron conversion efficiency(IPCE). We also utilized finite-difference tirne-domain(FDTD) to investigate the light coupling of GNRs with TiO2. Compare to the base anode, the IPCE of optimized electrode showed significant improvement and peaks broadening at 500--600 nm and 610--710 nm. We got an increase in overall conversion efficiency from 6.4% to 7.5%.展开更多
文摘采用种子生长法制备金纳米棒(AuNRs)以构建光学传感器,用于Fe^(3+)和Cu^(2+)的高选择性快速可视化检测。在酸性环境中,Fe^(3+)和Cu^(2+)通过与KI溶液反应,将I-氧化成I2。I2刻蚀AuNRs,导致其纵向表面等离子体共振(LSPR)吸收峰蓝移,从而实现对Fe^(3+)和Cu^(2+)的检测。结果表明,反应温度为50℃时,添加0.8 mL 0.1 mol·L^(-1)HCl、2 mL AuNRs生长液和20 mmol·L^(-1)KI溶液,与2 mL 500μmol·L^(-1)Fe^(3+)或30μmol·L^(-1)Cu^(2+)反应25或90 min,可将AuNRs刻蚀至LSPR吸收峰消失。该方法对Fe^(3+)和Cu^(2+)检测具有高选择性和准确性,对于Fe^(3+)、Cu^(2+)共存体系的检测,可通过加入适量F-与Fe^(3+)生成配合物[FeF_(6)]^(3-)完成对Fe^(3+)的化学掩蔽,消除Fe^(3+)的干扰,实现共存体系中Cu^(2+)的准确检测。
文摘Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.
基金Supported by the National Natural Science Foundation of China(Nos.91333120, 21271016) and the National Basic Research Program of China(No.2012CB720904).
文摘Direct evidence of effects of surface plasmon resonance(SPR) of gold naaorods(GNRs) on dual-band light absorption enhancement with coupling dye molecules was reported by introducing gold nanorod@SiO2(GNR@SiO2) core-shell nanoparticles into a photoelectric conversion system. GNR with asymmetric shape had unusual anisotropic SPR[transversal surface plasmon resonance(TSPR) and longitudinal surface plasmon resonance(LSPR)]. The excel- lent SPR of GNR made it a promising candidate as enhancing light absorption material to increase power conversion efflciency(PCE). The PCE was improved nearly 17.2% upon incorporating GNRs, mostly due to the increase in Jsc, while Vo~ and FF were unchanged. The improvement was mostly contributed by the SPR of the GNRs with coupling of N719. And there was also a complementary to N719 in visible light range. Therefore, SPR is an effective tool in improving the photocurrent and consequently enhancement of PCE. The TSPR and LSPR effects of GNRs on light harvesting were reflected in the increased monochromatic incident photon-to-electron conversion efficiency(IPCE). We also utilized finite-difference tirne-domain(FDTD) to investigate the light coupling of GNRs with TiO2. Compare to the base anode, the IPCE of optimized electrode showed significant improvement and peaks broadening at 500--600 nm and 610--710 nm. We got an increase in overall conversion efficiency from 6.4% to 7.5%.