An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-t...An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-tions of basic real-coded genetic algorithm are briefly dis-cussed and selected.A kind of chaos sequence is described in detail and added in the new algorithm ad a disturbance factor.The strategy of field partition is also used to im-prove the strcture of the new algorithm.Numerical ex-periment shows that the mew genetic algorithm can find the global optimum of complex funtions with satistaiting precision.展开更多
Genetic algorithms have been extensively used as a global optimization tool. These algorithms, however, suffer from their generally slow convergence rates. This paper proposes two approaches to address this limitation...Genetic algorithms have been extensively used as a global optimization tool. These algorithms, however, suffer from their generally slow convergence rates. This paper proposes two approaches to address this limitation. First, a new crossover technique, the weighted average normally-distributed arithmetic crossover (NADX), is introduced to enhance the rate of convergence. Second, twinkling is incorporated within the crossover phase of the genetic algorithms. Twinkling is a controlled random deviation that allows only a subset of the design variables to undergo the decisions of an optimization algorithm while maintaining the remaining variable values. Two twinkling genetic algorithms are proposed. The proposed algorithmsare compared to simple genetic algorithms by using various mathematical and engineering design test problems. The results show that twinkling genetic algorithms have the ability to consistently reach known global minima, rather than nearby sub-optimal points, and are able to do this with competitive rates of convergence.展开更多
A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent ...A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.展开更多
A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential tra...A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential transformation. For float-point represented chromosomes, crossover and mutation operators are given. Convergence of the algorithm is proved. The performance is tested by two generally used functions. Hybrid algorithm which takes the BP algorithm as a mutation operator is used to train a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm.展开更多
Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization ...Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.展开更多
文摘An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-tions of basic real-coded genetic algorithm are briefly dis-cussed and selected.A kind of chaos sequence is described in detail and added in the new algorithm ad a disturbance factor.The strategy of field partition is also used to im-prove the strcture of the new algorithm.Numerical ex-periment shows that the mew genetic algorithm can find the global optimum of complex funtions with satistaiting precision.
文摘Genetic algorithms have been extensively used as a global optimization tool. These algorithms, however, suffer from their generally slow convergence rates. This paper proposes two approaches to address this limitation. First, a new crossover technique, the weighted average normally-distributed arithmetic crossover (NADX), is introduced to enhance the rate of convergence. Second, twinkling is incorporated within the crossover phase of the genetic algorithms. Twinkling is a controlled random deviation that allows only a subset of the design variables to undergo the decisions of an optimization algorithm while maintaining the remaining variable values. Two twinkling genetic algorithms are proposed. The proposed algorithmsare compared to simple genetic algorithms by using various mathematical and engineering design test problems. The results show that twinkling genetic algorithms have the ability to consistently reach known global minima, rather than nearby sub-optimal points, and are able to do this with competitive rates of convergence.
文摘A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.
基金Supported by the National Natural Science Foundation
文摘A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential transformation. For float-point represented chromosomes, crossover and mutation operators are given. Convergence of the algorithm is proved. The performance is tested by two generally used functions. Hybrid algorithm which takes the BP algorithm as a mutation operator is used to train a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm.
基金supported by the National Natural Science Foundation of China (61172073)National Key Special Program(2012ZX03003005)+1 种基金the State Key Laboratory of Rail Traffic Control and Safety (RCS2011ZT003)Beijing Jiaotong University and the Fundamental Research Funds for the Central Universities
文摘Multi-objective parameter adjustment plays an important role in improving the performance of the cognitive radio (CR) system. Current research focus on the genetic algorithm (GA) to achieve parameter optimization in CR, while general GA always fall into premature convergence. Thereafter, this paper proposed a linear scale transformation to the fitness of individual chromosome, which can reduce the impact of extraordinary individuals exiting in the early evolution iterations, and ensure competition between individuals in the latter evolution iterations. This paper also introduces an adaptive crossover and mutation probability algorithm into parameter adjustment, which can ensure the diversity and convergence of the population. Two applications are applied in the parameter adjustment of CR, one application prefers the bit error rate and another prefers the bandwidth. Simulation results show that the improved parameter adjustment algorithm can converge to the global optimal solution fast without falling into premature convergence.