期刊文献+

一种快速自适应遗传算法及其仿真研究 被引量:19

Research on Fast Self-Adaptive Genetic Algorithm and Its Simulation
下载PDF
导出
摘要 遗传算法(Genetic Algorithm, GA)是一种模拟自然界生物进化过程与机制的一种优化搜索算法,有着广泛的应用前景。但是,简单遗传算法(Simple Genetic Algorithm,SGA)的收敛速度较慢,稳定性差,容易“过早收敛”。针对这些问题,本文提出了相应的解决办法,称为快速自适应遗传算法(Fast Self-Adaptive Genetic Algorithm, FSAGA),并通过仿真说明了算法的收敛快速性和全局收敛性都有了明显的改善。 Genetic Algorithm (GA) is a general purpose stochastic optimization method for search problems, which is invented to mimic some of the processes and mechanisms observed in natural evolution. But Simple Genetic Algorithms instinct deficiency like the unusually slow convergence, bad stability and easily-oriented prematurity has become the biggest obstacle for its further application. To solve the above problems, the corresponding solution—FSAGA (Fast Self-Adaptive Genetic Algorithm) is presented in this paper. Through simulation, it has shown that the convergent speed and global convergence are clearly improved.
出处 《系统仿真学报》 CAS CSCD 2004年第1期122-125,共4页 Journal of System Simulation
关键词 遗传算法 收敛速度 全局最优 替代策略 交叉和变异 genetic algorithm convergent speed global optimization replacement strategy crossover and mutation
  • 相关文献

参考文献4

二级参考文献4

共引文献149

同被引文献164

引证文献19

二级引证文献272

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部