This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-...This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.展开更多
This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators ...This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.展开更多
In this paper, we present an existence result for weak efficient solution for the vector optimization problem. The result is stated for invex strongly compactly Lipschitz functions.
The relationship between the convexity on the ultimate bearing surface of a structure and the second- order effects of loads is discussed. All of generalized non-overload forces acted on a structure forms a convex set...The relationship between the convexity on the ultimate bearing surface of a structure and the second- order effects of loads is discussed. All of generalized non-overload forces acted on a structure forms a convex set when ignoring the second-order effects (coupling effects between the generalized forces). It is true also when the Hessian matrix composed of the second-order partial derivatives on the hypersurface about the ultimate bearing of the structure is negative definite. The outward convexity is kept when the surface is expressed by certain dimensionless parameters. A series of properties based on the convexity are pointed out. Some applications in the analysis of bearing capacity of structures were illustrated with examples. The study shows that an evaluation about the bearing capacity state of a complex structure can be made on the basis of several points on the surface of the ultimate bearing of the structure.展开更多
This paper extends the class of generalized type I functions introduced by Aghezzaf and Hachimi(2000) to the context of higher-order case and formulate a number of higher-order duals to a non-differentiable multi-ob...This paper extends the class of generalized type I functions introduced by Aghezzaf and Hachimi(2000) to the context of higher-order case and formulate a number of higher-order duals to a non-differentiable multi-objective programming problem and establishes higher-order duality results under the higher-order generalized type I functions introduced in the present paper, A special case that appears repeatedly in the literature is that the support function is the square root of a positive semi-definite quadratic form. This and other special cases can be readily generated from these results.展开更多
文摘This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.
基金supported by the Cultivation Fund of the Key Scientific and Technical InnovationProject,Ministry of Education of China(NO708040)National Natural Science Foundation of China underProject 10601030Leading Academic Discipline Program,the 10th five year plan of 211 Project for Shanghai University of Finance and Economics.
基金Supported by Chongqing Key Lab. of Operations Research and System Engineering
文摘This paper studies a class of multiobjective generalized fractional programming problems, where the numerators of objective functions are the sum of differentiable function and convex function, while the denominators are the difference of differentiable function and convex function. Under the assumption of Calmness Constraint Qualification the Kuhn-Tucker type necessary conditions for efficient solution are given, and the Kuhn-Tucker type sufficient conditions for efficient solution are presented under the assumptions of (F, α, ρ, d)-V-convexity. Subsequently, the optimality conditions for two kinds of duality models are formulated and duality theorems are proved.
基金Ministério de Educacióny Ciencia de Espaa,Grant No.MTM2007-63432
文摘In this paper, we present an existence result for weak efficient solution for the vector optimization problem. The result is stated for invex strongly compactly Lipschitz functions.
文摘The relationship between the convexity on the ultimate bearing surface of a structure and the second- order effects of loads is discussed. All of generalized non-overload forces acted on a structure forms a convex set when ignoring the second-order effects (coupling effects between the generalized forces). It is true also when the Hessian matrix composed of the second-order partial derivatives on the hypersurface about the ultimate bearing of the structure is negative definite. The outward convexity is kept when the surface is expressed by certain dimensionless parameters. A series of properties based on the convexity are pointed out. Some applications in the analysis of bearing capacity of structures were illustrated with examples. The study shows that an evaluation about the bearing capacity state of a complex structure can be made on the basis of several points on the surface of the ultimate bearing of the structure.
文摘This paper extends the class of generalized type I functions introduced by Aghezzaf and Hachimi(2000) to the context of higher-order case and formulate a number of higher-order duals to a non-differentiable multi-objective programming problem and establishes higher-order duality results under the higher-order generalized type I functions introduced in the present paper, A special case that appears repeatedly in the literature is that the support function is the square root of a positive semi-definite quadratic form. This and other special cases can be readily generated from these results.