Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important informatio...Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty- four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.展开更多
Rice is one of the most important stable food as well as a monocotyledonous model organism for the plant research community.Here,we present RED(Rice Expression Database;http://expression.ic4r.org),an integrated dat...Rice is one of the most important stable food as well as a monocotyledonous model organism for the plant research community.Here,we present RED(Rice Expression Database;http://expression.ic4r.org),an integrated database of rice gene expression profiles derived entirely from RNA-Seq data.RED features a comprehensive collection of 284 high-quality RNA-Seq experiments,integrates a large number of gene expression profiles and covers a wide range of rice growth stages as well as various treatments.Based on massive expression profiles,RED provides a list of housekeeping and tissue-specific genes and dynamically constructs co-expression networks for gene(s) of interest.Besides,it provides user-friendly web interfaces for querying,browsing and visualizing expression profiles of concerned genes.Together,as a core resource in BIG Data Center,RED bears great utility for characterizing the function of rice genes and better understanding important biological processes and mechanisms underlying complex agronomic traits in rice.展开更多
AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression lev...AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression levels and patient clinic features. Uveal melanoma is the most common primary eye tumor in adults. Although many studies have identified some important genes and pathways that were relevant to progress of uveal melanoma, the relationship between co-expression and clinic traits in systems level of uveal melanoma is unclear yet. We employ WGCNA to investigate the relationship underlying molecular and phenotype in this study.METHODS: Gene expression profile of uveal melanoma and patient clinic traits were collected from the Gene Expression Omnibus(GEO) database. The gene co-expression is calculated by WGCNA that is the R package software. The package is used to analyze the correlation between pairs of expression levels of genes.The function of the genes were annotated by gene ontology(GO).RESULTS: In this study, we identified four co-expression modules significantly correlated with clinictraits. Module blue positively correlated with radiotherapy treatment. Module purple positively correlates with tumor location(sclera) and negatively correlates with patient age. Module red positively correlates with sclera and negatively correlates with thickness of tumor. Module black positively correlates with the largest tumor diameter(LTD). Additionally, we identified the hug gene(top connectivity with other genes) in each module. The hub gene RPS15 A, PTGDS, CD53 and MSI2 might play a vital role in progress of uveal melanoma.CONCLUSION: From WGCNA analysis and hub gene calculation, we identified RPS15 A, PTGDS, CD53 and MSI2 might be target or diagnosis for uveal melanoma.展开更多
基金supported by the National Natural Science Foundation of China (31271959)National Basic Research Program (2011CB100604) of China
文摘Genotype is generally determined by the co-expression of diverse genes and multiple regulatory pathways in plants. Gene co-expression analysis combining with physiological trait data provides very important information about the gene function and regulatory mechanism. L-Ascorbic acid (AsA), which is an essential nutrient component for human health and plant metabolism, plays key roles in diverse biological processes such as cell cycle, cell expansion, stress resistance, hormone synthesis, and signaling. Here, we applied a weighted gene correlation network analysis approach based on gene expression values and AsA content data in ripening tomato (Solanum lycopersicum L.) fruit with different AsA content levels, which leads to identification of AsA relevant modules and vital genes in AsA regulatory pathways. Twenty- four modules were compartmentalized according to gene expression profiling. Among these modules, one negatively related module containing genes involved in redox processes and one positively related module enriched with genes involved in AsA biosynthetic and recycling pathways were further analyzed. The present work herein indicates that redox pathways as well as hormone-signal pathways are closely correlated with AsA accumulation in ripening tomato fruit, and allowed us to prioritize candidate genes for follow-up studies to dissect this interplay at the biochemical and molecular level.
基金supported by grants from Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDA08020102 to Z.Z.and S.H.)International Partnership Program of the Chinese Academy of Sciences(No.153F11KYSB20160008)+3 种基金National Programs for High Technology Research and Development (863 ProgramNo.2015AA020108 to Z.Z.)National Natural Science Foundation of China(No.31100915 to LH.)the 100-Talent Program of Chinese Academy of Sciences(awarded to Z.Z.)
文摘Rice is one of the most important stable food as well as a monocotyledonous model organism for the plant research community.Here,we present RED(Rice Expression Database;http://expression.ic4r.org),an integrated database of rice gene expression profiles derived entirely from RNA-Seq data.RED features a comprehensive collection of 284 high-quality RNA-Seq experiments,integrates a large number of gene expression profiles and covers a wide range of rice growth stages as well as various treatments.Based on massive expression profiles,RED provides a list of housekeeping and tissue-specific genes and dynamically constructs co-expression networks for gene(s) of interest.Besides,it provides user-friendly web interfaces for querying,browsing and visualizing expression profiles of concerned genes.Together,as a core resource in BIG Data Center,RED bears great utility for characterizing the function of rice genes and better understanding important biological processes and mechanisms underlying complex agronomic traits in rice.
基金Supported by the National Natural Science Foundation of China(No.81271019No.61463046)Gansu Province Science Foundation for Youths(No.145RJYA282)
文摘AIM: To identify and understand the relationship between co-expression pattern and clinic traits in uveal melanoma, weighted gene co-expression network analysis(WGCNA) is applied to investigate the gene expression levels and patient clinic features. Uveal melanoma is the most common primary eye tumor in adults. Although many studies have identified some important genes and pathways that were relevant to progress of uveal melanoma, the relationship between co-expression and clinic traits in systems level of uveal melanoma is unclear yet. We employ WGCNA to investigate the relationship underlying molecular and phenotype in this study.METHODS: Gene expression profile of uveal melanoma and patient clinic traits were collected from the Gene Expression Omnibus(GEO) database. The gene co-expression is calculated by WGCNA that is the R package software. The package is used to analyze the correlation between pairs of expression levels of genes.The function of the genes were annotated by gene ontology(GO).RESULTS: In this study, we identified four co-expression modules significantly correlated with clinictraits. Module blue positively correlated with radiotherapy treatment. Module purple positively correlates with tumor location(sclera) and negatively correlates with patient age. Module red positively correlates with sclera and negatively correlates with thickness of tumor. Module black positively correlates with the largest tumor diameter(LTD). Additionally, we identified the hug gene(top connectivity with other genes) in each module. The hub gene RPS15 A, PTGDS, CD53 and MSI2 might play a vital role in progress of uveal melanoma.CONCLUSION: From WGCNA analysis and hub gene calculation, we identified RPS15 A, PTGDS, CD53 and MSI2 might be target or diagnosis for uveal melanoma.