A new double gate SOI LDMOS with a step doping profile in the drift region is proposed. The structure is characterized by one surface gate and another embedded gate under the P-body region. The broadened current flow ...A new double gate SOI LDMOS with a step doping profile in the drift region is proposed. The structure is characterized by one surface gate and another embedded gate under the P-body region. The broadened current flow path and the majority carrier accumulation layer on the side wall of the embedded gate reduce the specific on-resistance (Ron, sp). The electric field distribution is improved due to the embedded gate and step doping profile, resulting in a high breakdown voltage (BV) and low Ron, sp. The influences of device parameters on BV and Ron, sp are investigated by simulation. The results indicate that BV is increased by 35.2% and Ron, sp is decreased by 35.1% compared to a conventional SOI LDMOS.展开更多
A low on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) n-channel lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and its mechanism is investigated by simulation. The LDMOS has t...A low on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) n-channel lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and its mechanism is investigated by simulation. The LDMOS has two features: the integration of a planar gate and an extended trench gate (double gates (DGs)); and a buried P-layer in the N-drift region, which forms a triple reduced surface field (RESURF) (TR) structure. The triple RESURF not only modulates the electric field distribution, but also increases N-drift doping, resulting in a reduced specific on-resistance (Ron,sp) and an improved breakdown voltage (BV) in the off-state. The DGs form dual conduction channels and, moreover, the extended trench gate widens the vertical conduction area, both of which further reduce the Ron,sp. The BV and Ron,sp are 328 V and 8.8 mΩ·cm^2, respectively, for a DG TR metal-oxide semiconductor field-effect transistor (MOSFET) by simulation. Compared with a conventional SOI LDMOS, a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%. The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit, thereby saving the chip area and simplifying the fabrication processes.展开更多
An integrable silicon-on-insulator (SOl) power lateral MOSFET with a trench gate and a recessed drain (TGRD MOSFET) is proposed to reduce the on-resistance. Both of the trench gate extended to the buried oxide (...An integrable silicon-on-insulator (SOl) power lateral MOSFET with a trench gate and a recessed drain (TGRD MOSFET) is proposed to reduce the on-resistance. Both of the trench gate extended to the buried oxide (BOX) and the recessed drain reduce the specific on-resistance (Ron, sp) by widening the vertical conduction area and shortening the extra current path. The trench gate is extended as a field plate improves the electric field distribution. Breakdown voltage (BV) of 97 V and Ron, sp of 0.985 mf2-cm2 (l/os = 5 V) are obtained for a TGRD MOSFET with 6.5/xm half-cell pitch. Compared with the trench gate SOI MOSFET (TG MOSFET) and the conventional MOSFET, Ron' sp of the TGRD MOSFET decreases by 46% and 83% at the same BV, respectively. Compared with the SOI MOSFET with a trench gate and a trench drain (TGTD MOSFET), BV of the TGRD MOSFET increases by 37% at the same Ron,sp.展开更多
A split gate MOSFET(SG-MOSFET)is widely known for reducing the reverse transfer capacitance(C_(RSS)).In a 3.3 kV class,the SG-MOSFET does not provide reliable operation due to the high gate oxide electric field.In add...A split gate MOSFET(SG-MOSFET)is widely known for reducing the reverse transfer capacitance(C_(RSS)).In a 3.3 kV class,the SG-MOSFET does not provide reliable operation due to the high gate oxide electric field.In addition to the poor static performance,the SG-MOSFET has issues such as the punch through and drain-induced barrier lowering(DIBL)caused by the high gate oxide electric field.As such,a 3.3 kV 4 H-SiC split gate MOSFET with a grounded central implant region(SG-CIMOSFET)is proposed to resolve these issues and for achieving a superior trade-off between the static and switching performance.The SG-CIMOSFET has a significantly low on-resistance(R_(ON))and maximum gate oxide field(E_(OX))due to the central implant region.A grounded central implant region significantly reduces the C_(RSS)and gate drain charge(Q_(GD))by partially screening the gate-to-drain capacitive coupling.Compared to a planar MOSFET,the SG MOSFET,central implant MOSFET(CIMOSFET),the SGCIMOSFET improve the R_(ON)×Q_(GD)by 83.7%,72.4%and 44.5%,respectively.The results show that the device features not only the smallest switching energy loss but also the fastest switching time.展开更多
基金supported by the National Natural Science Foundation of China (No.60806025)the NKLAIC (Nos.9140C0903070904,jx0721)
文摘A new double gate SOI LDMOS with a step doping profile in the drift region is proposed. The structure is characterized by one surface gate and another embedded gate under the P-body region. The broadened current flow path and the majority carrier accumulation layer on the side wall of the embedded gate reduce the specific on-resistance (Ron, sp). The electric field distribution is improved due to the embedded gate and step doping profile, resulting in a high breakdown voltage (BV) and low Ron, sp. The influences of device parameters on BV and Ron, sp are investigated by simulation. The results indicate that BV is increased by 35.2% and Ron, sp is decreased by 35.1% compared to a conventional SOI LDMOS.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 609 76060)the National Key Laboratory of Analogue Integrated Circuit (Grant No. 9140C090304110C0905)
文摘A low on-resistance (Ron,sp) integrable silicon-on-insulator (SOI) n-channel lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and its mechanism is investigated by simulation. The LDMOS has two features: the integration of a planar gate and an extended trench gate (double gates (DGs)); and a buried P-layer in the N-drift region, which forms a triple reduced surface field (RESURF) (TR) structure. The triple RESURF not only modulates the electric field distribution, but also increases N-drift doping, resulting in a reduced specific on-resistance (Ron,sp) and an improved breakdown voltage (BV) in the off-state. The DGs form dual conduction channels and, moreover, the extended trench gate widens the vertical conduction area, both of which further reduce the Ron,sp. The BV and Ron,sp are 328 V and 8.8 mΩ·cm^2, respectively, for a DG TR metal-oxide semiconductor field-effect transistor (MOSFET) by simulation. Compared with a conventional SOI LDMOS, a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%. The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit, thereby saving the chip area and simplifying the fabrication processes.
基金supported by the National Natural Science Foundation of China(Nos.60976060,61176069)the National Key Laboratory of AnalogIntegrated Circuit(NLAIC),China(No.9140C090304110C0905)the State Key Laboratory of Electronic Thin Films and Integrated Devices,China(No.CXJJ201004)
文摘An integrable silicon-on-insulator (SOl) power lateral MOSFET with a trench gate and a recessed drain (TGRD MOSFET) is proposed to reduce the on-resistance. Both of the trench gate extended to the buried oxide (BOX) and the recessed drain reduce the specific on-resistance (Ron, sp) by widening the vertical conduction area and shortening the extra current path. The trench gate is extended as a field plate improves the electric field distribution. Breakdown voltage (BV) of 97 V and Ron, sp of 0.985 mf2-cm2 (l/os = 5 V) are obtained for a TGRD MOSFET with 6.5/xm half-cell pitch. Compared with the trench gate SOI MOSFET (TG MOSFET) and the conventional MOSFET, Ron' sp of the TGRD MOSFET decreases by 46% and 83% at the same BV, respectively. Compared with the SOI MOSFET with a trench gate and a trench drain (TGTD MOSFET), BV of the TGRD MOSFET increases by 37% at the same Ron,sp.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2018-0-01421)supervised by the IITP(Institute for Information&communications Technology Promotion)then Samsung Electronics.
文摘A split gate MOSFET(SG-MOSFET)is widely known for reducing the reverse transfer capacitance(C_(RSS)).In a 3.3 kV class,the SG-MOSFET does not provide reliable operation due to the high gate oxide electric field.In addition to the poor static performance,the SG-MOSFET has issues such as the punch through and drain-induced barrier lowering(DIBL)caused by the high gate oxide electric field.As such,a 3.3 kV 4 H-SiC split gate MOSFET with a grounded central implant region(SG-CIMOSFET)is proposed to resolve these issues and for achieving a superior trade-off between the static and switching performance.The SG-CIMOSFET has a significantly low on-resistance(R_(ON))and maximum gate oxide field(E_(OX))due to the central implant region.A grounded central implant region significantly reduces the C_(RSS)and gate drain charge(Q_(GD))by partially screening the gate-to-drain capacitive coupling.Compared to a planar MOSFET,the SG MOSFET,central implant MOSFET(CIMOSFET),the SGCIMOSFET improve the R_(ON)×Q_(GD)by 83.7%,72.4%and 44.5%,respectively.The results show that the device features not only the smallest switching energy loss but also the fastest switching time.