Interactions between plants and soil microorganisms can influence the other interactions in which plants participate, including interactions with herbivores. Many fungi, including arbuscular mycorrhizal fungi(AMF), fo...Interactions between plants and soil microorganisms can influence the other interactions in which plants participate, including interactions with herbivores. Many fungi, including arbuscular mycorrhizal fungi(AMF), form symbiotic relationships with the roots they inhabit, and potentially alter defense against pests. The objective of this study was to document the extent of root colonization by AMF on non-flooded rice plants grown under conditions typical of commercial fields. We hypothesized that AMF naturally colonized rice plants in different rice producing field locations. Rice plant samples were collected from areas across the southern United States, including Texas, Mississippi, Arkansas and two research stations in Louisiana. We quantified the amount of AMF colonization in insecticide-free rice plants over three consecutive years(2014–2016). The results revealed natural colonization of AMF in all rice producing areas. In all the three years of survey, rice-AMF associations were the greatest in Arkansas followed by Mississippi and Texas. This research will help draw attention to natural colonization of AMF in rice producing areas that can impact future rice research and production by facilitating agricultural exploitation of the symbiosis.展开更多
Forty different medicinal plants were investigated for arbuscular mycorrhizal association in the Rajshahi University Campus in Bangladesh. The results indicated that 35 different plants were infected by AM (arbuscular...Forty different medicinal plants were investigated for arbuscular mycorrhizal association in the Rajshahi University Campus in Bangladesh. The results indicated that 35 different plants were infected by AM (arbuscular mycorrhizal) fungi as found by trypan blue staining procedure. The percentage of root colonization by AM fungi varied from 13.3% to 100%. Mangifera indica and Morus indica have maximum percentage of colonization (100%). The intensity of root colonization were abundant in the plants belonging to the families Anacardiaceae, Asclepiadaceae, Moraceae, Leguminosae and Apocynaceae whereas the intensity of colonization of crop roots were moderate and poor belonging to Gramineae and Leguminosae. The presence of greater number of spore in soil was always associated with the incidence of abundant mycelia. In plant roots the formation of spore and mycelia was restricted by low pH. Number of mycorrhizal fungus spores ranged between 35 to100 per 100g air dried soil in different family respective soils. The frequency of mycorrhizal fungus infection showed positive correlation with soil pH, moisture, water holding capacity, texture, total nitrogen, organic carbon, phosphorus, calcium, potassium, and magnesium. Especially phosphorus and nitrogen in the soil greatly influenced the plant root infection by AM fungi.展开更多
基金the Louisiana Rice Research Board for funding this work under the Entomology Program
文摘Interactions between plants and soil microorganisms can influence the other interactions in which plants participate, including interactions with herbivores. Many fungi, including arbuscular mycorrhizal fungi(AMF), form symbiotic relationships with the roots they inhabit, and potentially alter defense against pests. The objective of this study was to document the extent of root colonization by AMF on non-flooded rice plants grown under conditions typical of commercial fields. We hypothesized that AMF naturally colonized rice plants in different rice producing field locations. Rice plant samples were collected from areas across the southern United States, including Texas, Mississippi, Arkansas and two research stations in Louisiana. We quantified the amount of AMF colonization in insecticide-free rice plants over three consecutive years(2014–2016). The results revealed natural colonization of AMF in all rice producing areas. In all the three years of survey, rice-AMF associations were the greatest in Arkansas followed by Mississippi and Texas. This research will help draw attention to natural colonization of AMF in rice producing areas that can impact future rice research and production by facilitating agricultural exploitation of the symbiosis.
文摘Forty different medicinal plants were investigated for arbuscular mycorrhizal association in the Rajshahi University Campus in Bangladesh. The results indicated that 35 different plants were infected by AM (arbuscular mycorrhizal) fungi as found by trypan blue staining procedure. The percentage of root colonization by AM fungi varied from 13.3% to 100%. Mangifera indica and Morus indica have maximum percentage of colonization (100%). The intensity of root colonization were abundant in the plants belonging to the families Anacardiaceae, Asclepiadaceae, Moraceae, Leguminosae and Apocynaceae whereas the intensity of colonization of crop roots were moderate and poor belonging to Gramineae and Leguminosae. The presence of greater number of spore in soil was always associated with the incidence of abundant mycelia. In plant roots the formation of spore and mycelia was restricted by low pH. Number of mycorrhizal fungus spores ranged between 35 to100 per 100g air dried soil in different family respective soils. The frequency of mycorrhizal fungus infection showed positive correlation with soil pH, moisture, water holding capacity, texture, total nitrogen, organic carbon, phosphorus, calcium, potassium, and magnesium. Especially phosphorus and nitrogen in the soil greatly influenced the plant root infection by AM fungi.