针对并联柔索驱动机器人力场模拟应用场景下驱动单元的力伺服控制系统设计,基于Links半物理仿真环境,运用Matlab System Identification工具箱,对柔索驱动单元系统数学模型进行模型辨识,并对系统的不确定性进行辨识。结果表明,考虑柔索...针对并联柔索驱动机器人力场模拟应用场景下驱动单元的力伺服控制系统设计,基于Links半物理仿真环境,运用Matlab System Identification工具箱,对柔索驱动单元系统数学模型进行模型辨识,并对系统的不确定性进行辨识。结果表明,考虑柔索驱动单元的不确定性因素后实际系统模型与理论模型相吻合,且系统理论模型具有较高的可靠性。在可靠的理论模型基础上,对柔索驱动单元进行控制器设计,并验证了模型辨识方法的有效性。基于模型辨识的控制器设计方法可以推广到其他类型系统的模型辨识。展开更多
In order to design a low-cost pneumatic force servo system with large output forces,a scheme of a booster cylinder controlled by high speed solenoid valves is proposed.A nonlinear model of the system is established,in...In order to design a low-cost pneumatic force servo system with large output forces,a scheme of a booster cylinder controlled by high speed solenoid valves is proposed.A nonlinear model of the system is established,in which the hysteresis of high speed solenoid valve is considered.In order to deal with parameter uncertainty and disturbances of noise and friction,a feed-forward control method based on a disturbance observer is proposed.A practical pneumatic force servo system is used to testify the feasibility of the proposed controller.The experimental results show that pneumatic force servo system based on the proposed controller has high force tracking accuracy and quick response.展开更多
文摘针对并联柔索驱动机器人力场模拟应用场景下驱动单元的力伺服控制系统设计,基于Links半物理仿真环境,运用Matlab System Identification工具箱,对柔索驱动单元系统数学模型进行模型辨识,并对系统的不确定性进行辨识。结果表明,考虑柔索驱动单元的不确定性因素后实际系统模型与理论模型相吻合,且系统理论模型具有较高的可靠性。在可靠的理论模型基础上,对柔索驱动单元进行控制器设计,并验证了模型辨识方法的有效性。基于模型辨识的控制器设计方法可以推广到其他类型系统的模型辨识。
基金Supported by the National Natural Science Foundation of China(51375045)the State Key Laboratory Program of Fluid Power and Mechatronic Systems of China(GZKF-201214)
文摘In order to design a low-cost pneumatic force servo system with large output forces,a scheme of a booster cylinder controlled by high speed solenoid valves is proposed.A nonlinear model of the system is established,in which the hysteresis of high speed solenoid valve is considered.In order to deal with parameter uncertainty and disturbances of noise and friction,a feed-forward control method based on a disturbance observer is proposed.A practical pneumatic force servo system is used to testify the feasibility of the proposed controller.The experimental results show that pneumatic force servo system based on the proposed controller has high force tracking accuracy and quick response.