The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the co...The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.展开更多
The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and...The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and the forces and rolling moment during turning were calculated. The reliability of the calculation method was validated by comparisons with experimental results. The results showed that during braking,liquid splashes in the tank and the maximum forces and G (the ratio of weight acting on the front axle to the rear axle) are large when A (the ratio of the arch area above the baffle to the area of cross section)≤0.1. When A≥0.2,as the position of the baffle is lowered,the maximum of Fx (the force in direction x) first decreases then increases,and the maximum of Fy (the force in direction y) and G increase. During turning,liquid splashes in the tank and the maximum forces and M (the rolling moment) are large when D (the ratio of the arch area above the baffle to the area of cross section)≤0.2. When D≥0.3,as the position of the baffle is lowered,the maximums of Fy,Fz (the force in direction z) and M increase.展开更多
To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established b...To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.展开更多
The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of...The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of the main body and the appendages, the submarine wake is dominated by a kind of highly non-uniform flow field, which has an adverse effect on the performance of the submarine propeller. In order to control the horseshoe vortex and improve the quality of the submarine wake, the flow field around a submarine model is simulated by the detached eddies simulation (DES) method, and the vortex configuration is displayed using the second invariant of the velocity derivative tensor. The state and the transition process of the horseshoe vortex are analyzed, then a modified method to break the vortex core by a vortex baffle is proposed. The flow numerical simulation is carried out to study the effect of this method. Numerical simulations show that, with the breakdown of the vortex core, many unstable vortices are shed and the energy of the horseshoe vortex is dissipated quickly, and the uniformity of the submarine wake is improved. The submarine wake test in a wind tunnel has verified the effect of the method to control the horseshoe vortex. The vortex baffle can improve the wake uniformity in cases of high Reynolds numbers as well, and it does not have adverse effects on the maneuverability and the speed ability of the submarine.展开更多
The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural haza...The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural hazards such as landslides and mudslides.This study,based on the threedimensional DEM(Discrete Element Method),investigated the impact of different baffle positions on debris flow protection.Debris flow velocity and kinetic energy variations were studied through single-factor experiments.Suitable baffle positions were preliminarily selected by analyzing the influence of the first-row baffle position on the impact force and accumulation mass of debris flow.Subsequently,based on the selected baffle positions and four factors influencing the effectiveness of baffle protection(baffle position(P),baffle height(h),row spacing(S_(r)),and angle of transit area(α)),an orthogonal design was employed to further explore the optimal arrangement of baffles.The research results indicate that the use of a baffle structure could effectively slow down the motion velocity of debris flows and dissipate their energy.When the baffle is placed in the transit area,the impact force on the first-row baffle is greater than that when the baffle is placed in the deposition area.Similarly,when the baffle is placed in the transit area,the obstruction effect on debris flow mass is also greater than that when the baffle is placed in the deposition area.Through orthogonal experimental range analysis,when the impact on the first row of baffles is used as the evaluation criterion,the importance of each influencing factor is ranked asα>P>S_(r)>h.When the mass of debris flow behind the baffle is regarded as the evaluation criterion,the rank is changed to P>α>S_(r)>h.The experimental simulation results show that the optimal baffle arrangement is:P_(5),S_(r)=16,α=35°,h=9.展开更多
The fluid flow phenomena in tundish have a strong influence not only on theuniform of composition and temperature of bath, but also on the separation of non-metallicinclusions, especially for the multi-strand tundish....The fluid flow phenomena in tundish have a strong influence not only on theuniform of composition and temperature of bath, but also on the separation of non-metallicinclusions, especially for the multi-strand tundish. A water model of a multi-strand tundish hasbeen set up based on the Froude number and Reynold number similarity criteria. The effect ofdam+weir and baffle on the uniform of composition and temperature of bath for different nozzles hasbeen studied. The residence time distribution curves of the fluid flow were measured by SG800.Comparing the photos of the flow pattern in tundish, the optimum arrangement of baffle+dam wasobtained. This new structure is benefit not only to uniform the temperature among different SENs(submerge entry nozzles) but also to separate the non-inclusions from the liquid steel, it can bewidely used in multi-strand tundish.展开更多
基金Supported by the National Basic Research Program of China ("973" Project) (Grant No. 2007CB206903)the National Natural Science Foundation of China (Grant No. 50721005)
文摘The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.
文摘The influence of baffle position on liquid sloshing during the braking and turning of a tank truck was studied using a volume of fluid (VOF) model. The forces,their positions and weight distribution during braking and the forces and rolling moment during turning were calculated. The reliability of the calculation method was validated by comparisons with experimental results. The results showed that during braking,liquid splashes in the tank and the maximum forces and G (the ratio of weight acting on the front axle to the rear axle) are large when A (the ratio of the arch area above the baffle to the area of cross section)≤0.1. When A≥0.2,as the position of the baffle is lowered,the maximum of Fx (the force in direction x) first decreases then increases,and the maximum of Fy (the force in direction y) and G increase. During turning,liquid splashes in the tank and the maximum forces and M (the rolling moment) are large when D (the ratio of the arch area above the baffle to the area of cross section)≤0.2. When D≥0.3,as the position of the baffle is lowered,the maximums of Fy,Fz (the force in direction z) and M increase.
基金Project(U1664252) supported by the National Natural Science Foundation of ChinaProjects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.
基金supported by the National Natural Science Foun-dation of China(Grant No.51209213)supported by the Science Study Foundation of Naval University of Engineering (Grant No. HGDQNJJ12004)
文摘The quality of the inflow across the propeller is closely related with the hydrodynamic performance and the noise characteristics of the propeller. For a submarine, with a horseshoe vortex generated at the junction of the main body and the appendages, the submarine wake is dominated by a kind of highly non-uniform flow field, which has an adverse effect on the performance of the submarine propeller. In order to control the horseshoe vortex and improve the quality of the submarine wake, the flow field around a submarine model is simulated by the detached eddies simulation (DES) method, and the vortex configuration is displayed using the second invariant of the velocity derivative tensor. The state and the transition process of the horseshoe vortex are analyzed, then a modified method to break the vortex core by a vortex baffle is proposed. The flow numerical simulation is carried out to study the effect of this method. Numerical simulations show that, with the breakdown of the vortex core, many unstable vortices are shed and the energy of the horseshoe vortex is dissipated quickly, and the uniformity of the submarine wake is improved. The submarine wake test in a wind tunnel has verified the effect of the method to control the horseshoe vortex. The vortex baffle can improve the wake uniformity in cases of high Reynolds numbers as well, and it does not have adverse effects on the maneuverability and the speed ability of the submarine.
基金provided by the National Natural Science Foundation of China(Grant No.41977233)the key projects of the Science and Technology Department of Sichuan Province(Grant No.2020YJ0360)+1 种基金Sichuan Education and Teaching Reform project(Grant No.JG2021-1069)the opening project of Sichuan province university key Laboratory(Grant No.SC_FQWLY-2020-Z-02)。
文摘The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural hazards such as landslides and mudslides.This study,based on the threedimensional DEM(Discrete Element Method),investigated the impact of different baffle positions on debris flow protection.Debris flow velocity and kinetic energy variations were studied through single-factor experiments.Suitable baffle positions were preliminarily selected by analyzing the influence of the first-row baffle position on the impact force and accumulation mass of debris flow.Subsequently,based on the selected baffle positions and four factors influencing the effectiveness of baffle protection(baffle position(P),baffle height(h),row spacing(S_(r)),and angle of transit area(α)),an orthogonal design was employed to further explore the optimal arrangement of baffles.The research results indicate that the use of a baffle structure could effectively slow down the motion velocity of debris flows and dissipate their energy.When the baffle is placed in the transit area,the impact force on the first-row baffle is greater than that when the baffle is placed in the deposition area.Similarly,when the baffle is placed in the transit area,the obstruction effect on debris flow mass is also greater than that when the baffle is placed in the deposition area.Through orthogonal experimental range analysis,when the impact on the first row of baffles is used as the evaluation criterion,the importance of each influencing factor is ranked asα>P>S_(r)>h.When the mass of debris flow behind the baffle is regarded as the evaluation criterion,the rank is changed to P>α>S_(r)>h.The experimental simulation results show that the optimal baffle arrangement is:P_(5),S_(r)=16,α=35°,h=9.
文摘The fluid flow phenomena in tundish have a strong influence not only on theuniform of composition and temperature of bath, but also on the separation of non-metallicinclusions, especially for the multi-strand tundish. A water model of a multi-strand tundish hasbeen set up based on the Froude number and Reynold number similarity criteria. The effect ofdam+weir and baffle on the uniform of composition and temperature of bath for different nozzles hasbeen studied. The residence time distribution curves of the fluid flow were measured by SG800.Comparing the photos of the flow pattern in tundish, the optimum arrangement of baffle+dam wasobtained. This new structure is benefit not only to uniform the temperature among different SENs(submerge entry nozzles) but also to separate the non-inclusions from the liquid steel, it can bewidely used in multi-strand tundish.