As flood extreme occurrences are projected to increase in intense and frequency due to climate change, the assessment of vulnerability and the identification of the most vulnerable areas, populations, assets and syste...As flood extreme occurrences are projected to increase in intense and frequency due to climate change, the assessment of vulnerability and the identification of the most vulnerable areas, populations, assets and systems are an urgent need. Vulnerability has been widely discussed and several flood projection tools have been developed using complex hydrological models. However, despite the significant contribution of flood projection maps to predicting the impact of potential floods, they are difficult and impractical to use by stakeholders and policy makers, while they have proven to be inefficient and out of date in several cases. This research aims to cover the gaps in coastal and riverine flood management, developing a method that models flood patterns, using geospatial data of past large flood disasters. The outcomes of this research produce a five scale vulnerability assessment method, which could be widely implemented in all sectors, including transport, critical infrastructure, public health, tourism, constructions etc. Moreover, they could facilitate decision making and provide a wide range of implementation by all stakeholders, insurance agents, land-use planners, risk experts and of course individual. According to this research, the majority of the elements exposed to flood hazards, lay at specific combinations between 1) elevation (Ei) and 2) distance from water-masses (Di), expressed as (Ei, Di), including: 1) in general landscapes: ([0 m, 1 m), [0 km, 6 km), [0 m - 3 m), [0 km, 3 km)) and ([0 m - 6 m), [0 km, 1 km)), 2) in low laying regions: ([0 m, 1 m), [0 km, 40 km), [0 m - 3 m), [0 km, 30 km)) and ([0 m - 6 m), [0 km, 15 km)) and 2) in riverine regions: ([0 m, 4 m), [0 km, 3 km)). All elements laying on these elevations and distances from water masses are considered extremely and highly vulnerable to flood extremes.展开更多
文摘As flood extreme occurrences are projected to increase in intense and frequency due to climate change, the assessment of vulnerability and the identification of the most vulnerable areas, populations, assets and systems are an urgent need. Vulnerability has been widely discussed and several flood projection tools have been developed using complex hydrological models. However, despite the significant contribution of flood projection maps to predicting the impact of potential floods, they are difficult and impractical to use by stakeholders and policy makers, while they have proven to be inefficient and out of date in several cases. This research aims to cover the gaps in coastal and riverine flood management, developing a method that models flood patterns, using geospatial data of past large flood disasters. The outcomes of this research produce a five scale vulnerability assessment method, which could be widely implemented in all sectors, including transport, critical infrastructure, public health, tourism, constructions etc. Moreover, they could facilitate decision making and provide a wide range of implementation by all stakeholders, insurance agents, land-use planners, risk experts and of course individual. According to this research, the majority of the elements exposed to flood hazards, lay at specific combinations between 1) elevation (Ei) and 2) distance from water-masses (Di), expressed as (Ei, Di), including: 1) in general landscapes: ([0 m, 1 m), [0 km, 6 km), [0 m - 3 m), [0 km, 3 km)) and ([0 m - 6 m), [0 km, 1 km)), 2) in low laying regions: ([0 m, 1 m), [0 km, 40 km), [0 m - 3 m), [0 km, 30 km)) and ([0 m - 6 m), [0 km, 15 km)) and 2) in riverine regions: ([0 m, 4 m), [0 km, 3 km)). All elements laying on these elevations and distances from water masses are considered extremely and highly vulnerable to flood extremes.