A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during in...A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke.展开更多
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ...This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.展开更多
We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of ...We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.展开更多
We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing mode...We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.展开更多
The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Far...The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.展开更多
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis...This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.展开更多
基金The project supported by the National Natural Science Foundation of China(10072066,90305009) the Chinese Academy of Sciences(KJCX-SW-L04,KJCX2-SW-L2)
文摘A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371)Joint Funds of Equipment Pre-Research and Ministry of Education of China(6141A02033339)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.
基金Basic Science Research Program through the National Research Foundation of Korea (NRF),The Ministry of Education,Science and Technology,The New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP),The Korea government Ministry of Knowledge Economy,M.J.Kim appreciates the financial support from National Science Foundation
文摘We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.
基金Acknowledgement This research was supported by the National Natural Science Foundation of China (Grant No. 10732030) and the 111 Project (B07009).
文摘We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.61803025,62073031)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-19010)the Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing.
文摘The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.
文摘This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.