Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncert...Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.展开更多
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are...This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.展开更多
Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression b...Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.展开更多
This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modifie...This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately.展开更多
In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering ...In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.展开更多
This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncerta...This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed.展开更多
Parametric uncertainties should always be considered when setting design criteria in order to ensure safe and cost effective design of engineered structures. This paper presents the results of the reliability assessme...Parametric uncertainties should always be considered when setting design criteria in order to ensure safe and cost effective design of engineered structures. This paper presents the results of the reliability assessment of a fully laterally restrained steel floor I-beam to Eurocode 3 design rules. The failure modes considered are bending, shear and deflection. These were solved to obtain reliability indices using first order reliability method coded in MATLAB environment. Parametric sensitivity analyses were carried out at varying values of the design parameters to show their relative contributions to the safety of the beam. It was seen that reliability indices generally decreased with an increase in load ratio, imposed load, beam span in bending, shear stress and deflection respectively. In addition, increasing the beam span beyond 10 m, load ratio above 1.4 and imposed load beyond 30 kN/m made the beam fail as these parameters gave negative reliability indices. For failure in deflection, reliability index rose with an increase in the radius of gyration and overall depth of the beam section accordingly. Furthermore, the reliability index surged as the thickness of the web increased when taking into account, shear failure. The results of the analysis showed that the steel beam is very safe in shear and at some load ratios and imposed loads for failure in bending and deflection respectively. The average values of reliability indices obtained for load ratios ranging from 1.0 to 1.4 fell from 3.017 to 3.457 for all failure mode studied. These values are within the recommended reliability indices by the Joint Committee on Structural Safety for structure with moderate failure consequences and beams in flexure.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.51275040 and 50905017)the Programme of Introducing Talents of Discipline to Universities(No.B12022)
文摘Reliability and optimization are two key elements for structural design. The reliability~ based topology optimization (RBTO) is a powerful and promising methodology for finding the optimum topologies with the uncertainties being explicitly considered, typically manifested by the use of reliability constraints. Generally, a direct integration of reliability concept and topol- ogy optimization may lead to computational difficulties. In view of this fact, three methodologies have been presented in this study, including the double-loop approach (the performance measure approach, PMA) and the decoupled approaches (the so-called Hybrid method and the sequential optimization and reliability assessment, SORA). For reliability analysis, the stochastic response surface method (SRSM) was applied, combining with the design of experiments generated by the sparse grid method, which has been proven as an effective and special discretization technique. The methodologies were investigated with three numerical examples considering the uncertainties including material properties and external loads. The optimal topologies obtained using the de- terministic, RBTOs were compared with one another; and useful conclusions regarding validity, accuracy and efficiency were drawn.
基金supported by the National Natural Science Foundation of China(Grant Nos.52109144,52025094 and 52222905).
文摘This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis.
基金Federal Highway Administration Under Grant No. DDEGRD-06-X-00408
文摘Buckling-restrained braces (BRBs) have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems. A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression. Although design guidelines for BRB applications have been developed, systematic procedures for assessing performance and quantifying reliability are still needed. This paper presents an analytical framework for assessing buckling-restrained braced frame (BRBF) reliability when subjected to seismic loads. This framework efficiently quantifies the risk of BRB failure due to low-cycle fatigue fracture of the BRB core. The procedure includes a series of components that: (1) quantify BRB demand in terms of BRB core deformation histories generated through stochastic dynamic analyses; (2) quantify the limit-state of a BRB in terms of its remaining cumulative plastic ductility capacity based on an experimental database; and (3) evaluate the probability of BRB failure, given the quantified demand and capacity, through structural reliability analyses. Parametric studies were conducted to investigate the effects of the seismic load, and characteristics of the BRB and BRBF on the probability of brace failure. In addition, fragility curves (i.e., conditional probabilities of brace failure given ground shaking intensity parameters) were created by the proposed framework. While the framework presented in this paper is applied to the assessment of BRBFs, the modular nature of the framework components allows for application to other structural components and systems.
文摘This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the previous spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral stochastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of random mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addition, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately.
基金supported by the National Natural Science Foundation of China(Grant No.50379046)the Doctoral Fund of the Ministry of Education of China(Grant No.A50221)
文摘In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
文摘This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed.
文摘Parametric uncertainties should always be considered when setting design criteria in order to ensure safe and cost effective design of engineered structures. This paper presents the results of the reliability assessment of a fully laterally restrained steel floor I-beam to Eurocode 3 design rules. The failure modes considered are bending, shear and deflection. These were solved to obtain reliability indices using first order reliability method coded in MATLAB environment. Parametric sensitivity analyses were carried out at varying values of the design parameters to show their relative contributions to the safety of the beam. It was seen that reliability indices generally decreased with an increase in load ratio, imposed load, beam span in bending, shear stress and deflection respectively. In addition, increasing the beam span beyond 10 m, load ratio above 1.4 and imposed load beyond 30 kN/m made the beam fail as these parameters gave negative reliability indices. For failure in deflection, reliability index rose with an increase in the radius of gyration and overall depth of the beam section accordingly. Furthermore, the reliability index surged as the thickness of the web increased when taking into account, shear failure. The results of the analysis showed that the steel beam is very safe in shear and at some load ratios and imposed loads for failure in bending and deflection respectively. The average values of reliability indices obtained for load ratios ranging from 1.0 to 1.4 fell from 3.017 to 3.457 for all failure mode studied. These values are within the recommended reliability indices by the Joint Committee on Structural Safety for structure with moderate failure consequences and beams in flexure.