It is shown that any solution to the semilinear problem{u(x,0=)u0(x)〈1,x∈[-1,1] u(±1,t)=0,t∈(0,T), ut=uxx+δ(1-u)^-p(x,t)∈(-1,1) ×(0,T)either touches 1 in finite time or converges smooth...It is shown that any solution to the semilinear problem{u(x,0=)u0(x)〈1,x∈[-1,1] u(±1,t)=0,t∈(0,T), ut=uxx+δ(1-u)^-p(x,t)∈(-1,1) ×(0,T)either touches 1 in finite time or converges smoothly to a steady state as t -~ ~e. Some extensions of this result to higher dimensions are also discussed.展开更多
考虑含有奇异项的半线性抛物型方程组的初边值问题,证明了当区域Ω适当大,使在Ω上L ap lace算子在齐次D irichket边界条件下特征值问题的第一特征值小于某一常数时解会在有限时刻发生猝灭,并对猝灭时刻的上、下限进行估计,其次对猝灭...考虑含有奇异项的半线性抛物型方程组的初边值问题,证明了当区域Ω适当大,使在Ω上L ap lace算子在齐次D irichket边界条件下特征值问题的第一特征值小于某一常数时解会在有限时刻发生猝灭,并对猝灭时刻的上、下限进行估计,其次对猝灭速率进行讨论。展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10801058)an Earmarked Grant for Research, Hong Kong and a self-determined Research Fund of CCNU from the Colleges’ Basic Research and Operation of MOE
文摘It is shown that any solution to the semilinear problem{u(x,0=)u0(x)〈1,x∈[-1,1] u(±1,t)=0,t∈(0,T), ut=uxx+δ(1-u)^-p(x,t)∈(-1,1) ×(0,T)either touches 1 in finite time or converges smoothly to a steady state as t -~ ~e. Some extensions of this result to higher dimensions are also discussed.