T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, an...T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices.展开更多
文摘T700/Al and M40/Al composites were fabricated by squeeze casting technology, and their interface and mechanical properties were investigated comparatively. The results showed that both of the composites were dense, and the fibers were distributed uniformly in aluminum matrix. Aluminum carbide (Al4C3) was observed on the interface of the two carbon fiber-reinforced aluminum (Cf/Al) composites. There was little Al4C3 with a length of 300-500 nm and a width of 30-60 nm in the M40/Al composite, whereas there was a great deal of Al4C3 with a length of 200-400 nm and a width of 100-200 nm in the T700/Al composite, due to a higher graphitization of M40Cf than T700Cf. The M40/Al composite showed a much higher tensile strength than the TT00/Al composite, and it was related to interracial bonding between carbon fibers and aluminum matrices.