为了解决永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)运行过程中对系统参数扰动及端部效应等不确定因素敏感的问题,提出了一种PMLSM的非线性鲁棒控制方法。利用反馈线性化的思想,对PMLSM数学模型进行变换得到...为了解决永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)运行过程中对系统参数扰动及端部效应等不确定因素敏感的问题,提出了一种PMLSM的非线性鲁棒控制方法。利用反馈线性化的思想,对PMLSM数学模型进行变换得到包含不确定因素的准线性化且解耦的模型。采用msat函数的思想方法,设计了固定边界层滑模控制器,确保系统鲁棒性。同时给出了力观测器的设计方法估计新模型中未知的负载力。不需要知道系统参数的精确数值,通过确定其范围就可以使控制器得到良好的鲁棒性。仿真与实验结果均验证了文中所提出方法的正确性和控制策略的有效性。展开更多
Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state of a quantum system is selected. Considering the cases that an initial state is and is not orthogo...Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state of a quantum system is selected. Considering the cases that an initial state is and is not orthogonal to the desired state respectively, we propose a class of control strategies with state feedback that ensures the stability of the closed-loop control system. Especially, the asymptotic stability of the control system is analyzed, deduced and proved in detail. Finally, a simulation experiment on a spin-1/2 particle system is done and the relation between the system state evolution time and control value is analyzed with diffierent parameters . Research results have general theoretical meaning for control of quantum systems.展开更多
文摘为了解决永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)运行过程中对系统参数扰动及端部效应等不确定因素敏感的问题,提出了一种PMLSM的非线性鲁棒控制方法。利用反馈线性化的思想,对PMLSM数学模型进行变换得到包含不确定因素的准线性化且解耦的模型。采用msat函数的思想方法,设计了固定边界层滑模控制器,确保系统鲁棒性。同时给出了力观测器的设计方法估计新模型中未知的负载力。不需要知道系统参数的精确数值,通过确定其范围就可以使控制器得到良好的鲁棒性。仿真与实验结果均验证了文中所提出方法的正确性和控制策略的有效性。
基金Supported by National Natural Science Foundation of P.R.China(No. 50375148)
文摘Based on Bures distance, a Lyapunov function that represents the distance between a desired state and the actual state of a quantum system is selected. Considering the cases that an initial state is and is not orthogonal to the desired state respectively, we propose a class of control strategies with state feedback that ensures the stability of the closed-loop control system. Especially, the asymptotic stability of the control system is analyzed, deduced and proved in detail. Finally, a simulation experiment on a spin-1/2 particle system is done and the relation between the system state evolution time and control value is analyzed with diffierent parameters . Research results have general theoretical meaning for control of quantum systems.