In industrial process control systems,there is overwhelming evidence corroborating the notion that economic or technical limitations result in some key variables that are very difficult to measure online.The data-driv...In industrial process control systems,there is overwhelming evidence corroborating the notion that economic or technical limitations result in some key variables that are very difficult to measure online.The data-driven soft sensor is an effective solution because it provides a reliable and stable online estimation of such variables.This paper employs a deep neural network with multiscale feature extraction layers to build soft sensors,which are applied to the benchmarked Tennessee-Eastman process(TEP)and a real wind farm case.The comparison of modelling results demonstrates that the multiscale feature extraction layers have the following advantages over other methods.First,the multiscale feature extraction layers significantly reduce the number of parameters compared to the other deep neural networks.Second,the multiscale feature extraction layers can powerfully extract dataset characteristics.Finally,the multiscale feature extraction layers with fully considered historical measurements can contain richer useful information and improved representation compared to traditional data-driven models.展开更多
Predicting disruptions across different tokamaks is necessary for next generation device.Future large-scale tokamaks can hardly tolerate disruptions at high performance discharge,which makes it difficult for current d...Predicting disruptions across different tokamaks is necessary for next generation device.Future large-scale tokamaks can hardly tolerate disruptions at high performance discharge,which makes it difficult for current data-driven methods to obtain an acceptable result.A machine learning method capable of transferring a disruption prediction model trained on one tokamak to another is required to solve the problem.The key is a feature extractor which is able to extract common disruption precursor traces in tokamak diagnostic data,and can be easily transferred to other tokamaks.Based on the concerns above,this paper presents a deep feature extractor,namely,the fusion feature extractor(FFE),which is designed specifically for extracting disruption precursor features from common diagnostics on tokamaks.Furthermore,an FFE-based disruption predictor on J-TEXT is demonstrated.The feature extractor is aimed to extracting disruption-related precursors and is designed according to the precursors of disruption and their representations in common tokamak diagnostics.Strong inductive bias on tokamak diagnostics data is introduced.The paper presents the evolution of the neural network feature extractor and its comparison against general deep neural networks,as well as a physics-based feature extraction with a traditional machine learning method.Results demonstrate that the FFE may reach a similar effect with physics-guided manual feature extraction,and obtain a better result compared with other deep learning methods.展开更多
针对传统的动态核主成分分析(dynamic kernel principal component analysis,DKPCA)用于大样本数据集的故障检测时,占用计算机内存大、计算复杂度高等不足,提出一种基于特征子空间的DKPCA算法(EFS-DKPCA)。该方法通过构建具有较小维数...针对传统的动态核主成分分析(dynamic kernel principal component analysis,DKPCA)用于大样本数据集的故障检测时,占用计算机内存大、计算复杂度高等不足,提出一种基于特征子空间的DKPCA算法(EFS-DKPCA)。该方法通过构建具有较小维数特征子空间上的正交基来简化核矩阵K,从而降低DKPCA的计算复杂性。与DKPCA方法相比,该方法具有更高的计算效率,且只需较小的计算机存储空间。将该方法应用于TE(tennessee eastman)过程,仿真结果显示,两者诊断结果大致相同,而所需时间大大减小,说明了本算法的有效性。展开更多
基金supported by National Natural Science Foundation of China(No.61873142)the Science and Technology Research Program of the Chongqing Municipal Education Commission,China(Nos.KJZD-K202201901,KJQN202201109,KJQN202101904,KJQN202001903 and CXQT21035)+2 种基金the Scientific Research Foundation of Chongqing University of Technology,China(No.2019ZD76)the Scientific Research Foundation of Chongqing Institute of Engineering,China(No.2020xzky05)the Chongqing Municipal Natural Science Foundation,China(No.cstc2020jcyj-msxmX0666).
文摘In industrial process control systems,there is overwhelming evidence corroborating the notion that economic or technical limitations result in some key variables that are very difficult to measure online.The data-driven soft sensor is an effective solution because it provides a reliable and stable online estimation of such variables.This paper employs a deep neural network with multiscale feature extraction layers to build soft sensors,which are applied to the benchmarked Tennessee-Eastman process(TEP)and a real wind farm case.The comparison of modelling results demonstrates that the multiscale feature extraction layers have the following advantages over other methods.First,the multiscale feature extraction layers significantly reduce the number of parameters compared to the other deep neural networks.Second,the multiscale feature extraction layers can powerfully extract dataset characteristics.Finally,the multiscale feature extraction layers with fully considered historical measurements can contain richer useful information and improved representation compared to traditional data-driven models.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFE03040004)the National Natural Science Foundation of China (Grant No. 51821005)
文摘Predicting disruptions across different tokamaks is necessary for next generation device.Future large-scale tokamaks can hardly tolerate disruptions at high performance discharge,which makes it difficult for current data-driven methods to obtain an acceptable result.A machine learning method capable of transferring a disruption prediction model trained on one tokamak to another is required to solve the problem.The key is a feature extractor which is able to extract common disruption precursor traces in tokamak diagnostic data,and can be easily transferred to other tokamaks.Based on the concerns above,this paper presents a deep feature extractor,namely,the fusion feature extractor(FFE),which is designed specifically for extracting disruption precursor features from common diagnostics on tokamaks.Furthermore,an FFE-based disruption predictor on J-TEXT is demonstrated.The feature extractor is aimed to extracting disruption-related precursors and is designed according to the precursors of disruption and their representations in common tokamak diagnostics.Strong inductive bias on tokamak diagnostics data is introduced.The paper presents the evolution of the neural network feature extractor and its comparison against general deep neural networks,as well as a physics-based feature extraction with a traditional machine learning method.Results demonstrate that the FFE may reach a similar effect with physics-guided manual feature extraction,and obtain a better result compared with other deep learning methods.