期刊文献+

乳腺肿瘤超声图像识别模式分类方法的比较研究 被引量:3

Research on pattern classification methods for ultrasound breast tumor image
下载PDF
导出
摘要 目的利用乳腺肿瘤超声图像良恶性的不同特征,借助于模式分类方法对乳腺肿瘤良恶性进行识别,作为医生的计算机辅助诊断。方法本文研究基于乳腺肿瘤超声图像的原始特征参数已提取情况下,采用顺序前进搜索方法获得最优特征矢量,然后利用支撑矢量机、贝叶斯分类器、BP网络和Fisher线性判别器四种模式识别方法分别对乳腺肿瘤良恶性进行识别。结果基于200例病例随机划分为训练集100例和测试集100例进行测试,支撑矢量机、贝叶斯分类器、BP网络和Fisher线性判别器的Accuracy分别为0.960,0.940,0.932±0.013,0.930。结论支撑矢量机的分类性能优于其它分类器,能有效地对超声图像乳腺肿瘤进行良恶性识别。 Objective To develop a computer-aided diagnosis with multiple features based on Pattern classification methods to differentiate benign from malignant breast tumor. Methods In this paper, optimal feature vector was firstly obtained from features extracted from Ultrasound Breast Tumor Image using Sequential Forward Selection Algorithm, then four pattern classification methods was used to classify the breast tumor, these pattern classification methods include SVM, BP, Bayes and Fisher classifier. Results Experiments on 200 ultrasonic images, randomly divided into training set 100 and prediction set 100, showed that the Accuracy of SVM, Bayes, BP and Fisher was 0.960, 0.940, 0.932±0.013, 0.930 respectively. Conclusion SVM classifier has the best performance and can effectively differentiate benign and malignant lesions.
出处 《上海医学影像》 2006年第2期102-104,共3页 Shanghai Medical Imaging
基金 上海市科委项目资助(054119612)
关键词 超声图像 特征抽取器 支撑向量机 分类器 Ultrasound image Feature extractor SVM Classifier
  • 相关文献

参考文献2

二级参考文献4

共引文献16

同被引文献46

  • 1周世崇,曾炜,范亦武,常才.乳腺超声分级方法应用的初步探讨[J].中国超声医学杂志,2008,24(S1):19-23. 被引量:24
  • 2汪源源,沈嘉琳,王涌,王怡.基于形态特征判别超声图像中乳腺肿瘤的良恶性[J].光学精密工程,2006,14(2):333-340. 被引量:15
  • 3JEMAL A, SIEGEL R, WARD E, et al. Cancer statistics 2008[J]. CA: A Cancer Journal for Clinicians, 2008, 58(2) : 71-96. 被引量:1
  • 4HUANG Y L. Computer-aided diagnosis using neural networks and support vector machines for breast ultrasonography [J].Journal of Medical Ultrasound, 2009, 17(1): 17-24. 被引量:1
  • 5HEINIG J, WITTELER R, SCHMITZ R, et al. Accuracy of classification of breast ultrasound findings based on criteria used for BI-RADS [J]. Ultrasound in Obstetrics & Gynecology, 2008, 32(4): 553-578. 被引量:1
  • 6BURNSIDE E S, SICKLES E A, BASSETT L W, et al. The ACR BI-RADS experience: learning from history[J]. Journal of the American College of Radiology, 2009,6 ( 12 ) : 851-860. 被引量:1
  • 7LEVY L, SUISSA M, CHICHE J F, et al. BIRADS ultrasonography [J]. European Journal of Radiology, 2007, 61 (2) :202-211. 被引量:1
  • 8SHEN W C, CHANG R F, MOON W K, et al. Breast ultrasound computer-aided diagnosis using BI-RADS features [J]. Academic Radiology, 2007, 14(8), 928-939. 被引量:1
  • 9KIM E K, KO K H, KWAK J Y, et al. Clinical application of the BI-RADS final assessment to breast sonography in conjunction with mammography [J]. American Journal of Roentgenology, 2008, 190(5)z 1209-1215. 被引量:1
  • 10KWAK J Y, KIM E K, PARK H L, et al. Application of the breast imaging reporting and data system final assessment system in sonography of palpable breast lesions and reconsideration of the modified triple test [J]. Journal of Ultrasound in Medicine, 2006, 25(10):1255-1261. 被引量:1

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部