In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were d...In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.展开更多
文摘在农牧交错带——内蒙古自治区太仆寺旗采集的土壤样品的风洞实验研究结果表明:耕作模式的不同导致土壤风蚀状况的差异。在深松、翻耕、翻耕碾碎、小麦茬10 cm、荞麦茬10 cm、胡麻茬10 cm与无残茬等7种耕作模式的风洞实验中,翻耕碾碎风蚀速率均值最大,达到124.8 g m-2 min-1,胡麻茬最小,为15.14 g m-2 min-1,前者是后者风蚀速率的8.24倍。7种耕作模式风蚀速率均值的大小顺序为:翻耕碾碎>无残茬>深松>荞麦茬>翻耕>小麦茬>胡麻茬。结合对不同耕作模式土壤风蚀速率与风速关系的进一步分析可定量揭示出:翻耕碾碎、无残茬模式防风蚀效果最差,胡麻茬、小麦茬、翻耕模式防风蚀效果最好,深松、荞麦茬防风蚀效果居中。本文结论对农牧交错带旱作农业增强农田防风抗蚀能力有借鉴意义。
基金supported by the National Natural Science Foundation of China(grant 40573001)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050284043 and No.20050284044).
文摘In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.