期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines 被引量:7
1
作者 Jun-hong ZHANG Yu LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第2期272-286,共15页
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en... Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines. 展开更多
关键词 Diesel Fault diagnosis Complete ensemble intrinsic time-scale decomposition (CE1TD) l east square supportvector machine (LSSVM) Hybrid differential evolution and particle swarm optimization (HDEPSO)
原文传递
Eigen microstates and their evolutions in complex systems 被引量:7
2
作者 Yu Sun Gaoke Hu +6 位作者 Yongwen Zhang Bo Lu Zhenghui Lu Jingfang Fan Xiaoteng Li Qimin Deng Xiaosong Chen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第6期140-157,共18页
Emergence refers to the existence or formation of collective behaviors in complex systems.Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evol... Emergence refers to the existence or formation of collective behaviors in complex systems.Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evolution of complex system.In this framework,the statistical ensemble composed of M microstates of a complex system with N agents is defined by the normalized N×M matrix A,whose columns represent microstates and order of row is consist with the time.The ensemble matrix A can be decomposed as■,where r=min(N,M),eigenvalueσIbehaves as the probability amplitude of the eigen microstate U_I so that■and U_I evolves following V_I.In a disorder complex system,there is no dominant eigenvalue and eigen microstate.When a probability amplitudeσIbecomes finite in the thermodynamic limit,there is a condensation of the eigen microstate UIin analogy to the Bose–Einstein condensation of Bose gases.This indicates the emergence of U_I and a phase transition in complex system.Our framework has been applied successfully to equilibrium threedimensional Ising model,climate system and stock markets.We anticipate that our eigen microstate method can be used to study non-equilibrium complex systems with unknown orderparameters,such as phase transitions of collective motion and tipping points in climate systems and ecosystems. 展开更多
关键词 complex system phase transition critical phenomena Earth system statistical ensemble eigen microstate dynamic evolution ECONOPHYSICS
原文传递
基于SDL-LightGBM集成学习的软件缺陷预测模型
3
作者 谢华祥 高建华 黄子杰 《计算机工程与设计》 北大核心 2024年第3期769-776,共8页
为提高软件缺陷预测准确性和预测模型的可解释性,提出一种Spearman+DE+LIME+LightGBM(SDL-LightGBM)集成学习的软件缺陷预测模型。使用混合特征选择方法Spearman+LightGBM确定最佳特征子集,在保证模型预测性能的情况下降低模型复杂度;... 为提高软件缺陷预测准确性和预测模型的可解释性,提出一种Spearman+DE+LIME+LightGBM(SDL-LightGBM)集成学习的软件缺陷预测模型。使用混合特征选择方法Spearman+LightGBM确定最佳特征子集,在保证模型预测性能的情况下降低模型复杂度;使用集成学习算法LightGBM(light gradient boosting machine)对特征子集建立预测模型,并使用差分进化(differential evolution, DE)算法优化模型的重要超参数;使用局部可解释的模型无关技术(local interpretable model-agnostic explanations, LIME)对模型进行局部可解释分析。实验通过12个项目的35个版本的结果表明,SDL-LightGBM算法优于现有的软件缺陷预测方法,F1值平均提高8.97%,AUC值平均提高11.42%,模型训练时间缩短43.6%。 展开更多
关键词 缺陷预测 机器学习 集成学习 特征选择 模型优化 模型解释 差分进化
下载PDF
集成学习人工蜂群算法 被引量:3
4
作者 杜振鑫 刘广钟 赵学华 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第2期124-131,共8页
为了抑制人工蜂群算法中的早熟收敛问题,提出一种集成学习框架,挖掘种群中的有用信息来抑制早熟。当个体产生候选解的时候,通过对所有好于当前解的个体线性组合,产生一个集成最优解;然后利用相应的人工蜂群算法的搜索公式产生候选解,该... 为了抑制人工蜂群算法中的早熟收敛问题,提出一种集成学习框架,挖掘种群中的有用信息来抑制早熟。当个体产生候选解的时候,通过对所有好于当前解的个体线性组合,产生一个集成最优解;然后利用相应的人工蜂群算法的搜索公式产生候选解,该公式中的全局最优解被集成最优解代替。该框架通过产生更有希望的个体带领算法进化,帮助算法逃离局部最优解。实验表明,新的集成学习框架显著地提高了全局最优解引导的人工蜂群算法的性能,而没有增加算法的计算复杂度,且该框架可提高全局最优解引导的差分、粒子群算法的性能。 展开更多
关键词 人工蜂群算法 集成学习 粒子群算法 差分进化算法 进化计算
下载PDF
The Use of Rank Histograms and MVL Diagrams to Characterize Ensemble Evolution in Weather Forecasting 被引量:2
5
作者 Jorge A.REVELLI Miguel A.RODRIGUEZ Horacio S.WIO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1425-1437,共13页
Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analy... Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analysis, which does not allow us to distinguish if the origin of its variability is external noise or comes from chaotic sources. The recently introduced Mean to Variance Logarithmic (MVL) Diagram accounts for the spatial variability, being very sensitive to the spatial localization produced by infinitesimal perturbations of spatiotemporal chaotic systems. By using as a benchmark a simple model subject to noise, we show the distinct information given by Rank Histograms and MVL Diagrams. Hence, the main effects of the external noise can be visualized in a graphic. From the MVL diagram we clearly observe a reduction of the amplitude growth rate and of the spatial localization (chaos suppression), while from the Rank Histogram we observe changes in the reliability of the ensemble. We conclude that in a complex framework including spatiotemporal chaos and noise, both provide a more complete forecasting picture. 展开更多
关键词 rank histogram MVL diagram ensemble evolution noise space-time chaos forecasting
下载PDF
集合预报风场扰动的物理结构及演变特征 被引量:3
6
作者 张瑜 时洋 +1 位作者 周勃旸 马旭林 《大气科学学报》 CSCD 北大核心 2022年第2期268-279,共12页
初始扰动结构和振幅的合理性直接影响到集合预报的质量和整体性能,合理的初始扰动结构是确保集合预报扰动质量的关键。本文基于欧洲中期天气预报中心数据、我国T639全球集合预报系统以及GRAPES区域集合预报系统的预报场,针对模式初值不... 初始扰动结构和振幅的合理性直接影响到集合预报的质量和整体性能,合理的初始扰动结构是确保集合预报扰动质量的关键。本文基于欧洲中期天气预报中心数据、我国T639全球集合预报系统以及GRAPES区域集合预报系统的预报场,针对模式初值不确定性,主要研究了风场初始扰动结构及其集合离散度、扰动能量等结构和演变特征,分析了集合预报风场初始扰动的空间物理结构及其时空演变特征,为集合预报初始扰动的合理构造提供客观依据。结果表明:绝大部分风场初始扰动位于主要天气系统附近,并且具有显著的流依赖特征;集合离散度与扰动能量随着预报时效的延长都呈现出合理发展的状态,对流层低层以扰动内能为主,高层扰动动能占主要成分,且扰动动能在演化过程中起主导作用;同时,离散度结构的演变与天气形势的发展密切相关,这从另一种角度体现了扰动结构随流型依赖的特性。研究结果验证了区域集合预报比全球集合预报能捕获更丰富的中小尺度扰动信息,全球集合预报系统中ECMWF的中大尺度扰动结构更为合理,但我国T639集合预报系统更适用于中国地区;相对于ECMWF的全球集合预报,我国的集合预报系统一般存在高层离散度不足的问题。 展开更多
关键词 集合预报 初始扰动 物理结构 演变特征 风场扰动
下载PDF
基于自适应学习群体搜索技术的集成进化算法 被引量:2
7
作者 薛羽 庄毅 +1 位作者 许斌 张友益 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第2期458-465,共8页
为了提高连续数值优化算法的普适性和鲁棒性,提出了基于自适应学习群体搜索技术的集成进化算法.该算法集成了3种自适应学习群体智能优化算法作为子算法,其中1种子算法是本文设计的,另外两种子算法来自相关文献.相应地,整个进化种群被分... 为了提高连续数值优化算法的普适性和鲁棒性,提出了基于自适应学习群体搜索技术的集成进化算法.该算法集成了3种自适应学习群体智能优化算法作为子算法,其中1种子算法是本文设计的,另外两种子算法来自相关文献.相应地,整个进化种群被分成了3个子种群,在进化过程中,算法以并行的方式采用每种子算法独立地进化各自的子种群,而在进化过程的不同阶段,每种子算法的进化策略及其参数可以自适应地调整.在实验部分,首先定义了算法性能度量标准,然后在26个较新的测试函数上做了算法性能对比实验,实验结果表明所提出的算法具有较高的普适性和鲁棒性. 展开更多
关键词 自适应 集成进化 进化学习 智能计算 优化
原文传递
基于差分进化的中文情感分类集成算法研究 被引量:2
8
作者 杨梦月 卫伟 +1 位作者 陆慧娟 卢海峰 《计量学报》 CSCD 北大核心 2020年第2期225-230,共6页
情感分类是一种从文本中提取情感倾向的文本分类任务。集成学习通过结合几个分类器,在情感分类任务上能够获得比个体分类器更好的分类效果。但是,由于个体分类器在数据集上的表现不同,个体分类器在集成方法中的权重难以确定。针对集成... 情感分类是一种从文本中提取情感倾向的文本分类任务。集成学习通过结合几个分类器,在情感分类任务上能够获得比个体分类器更好的分类效果。但是,由于个体分类器在数据集上的表现不同,个体分类器在集成方法中的权重难以确定。针对集成学习中个体分类器的权重优化问题,提出一种基于差分进化优化个体分类器权重的集成分类方法,并将其应用于中文情感分类。以分类准确率为适应度值,通过差分进化算法优化5种个体分类器的权重组合,在3个领域的评论语料集上进行实验。实验结果表明,与一般的集成方法相比,该方法在中文情感分类上有更好的分类效果。 展开更多
关键词 计量学 情感分类 集成学习 差分进化 权重优化
下载PDF
基于热点解和差分进化的多目标聚类集成算法 被引量:2
9
作者 李莉 李妍琰 《计算机工程与设计》 CSCD 北大核心 2014年第8期2912-2916,共5页
针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强... 针对使用多目标聚类集成算法得到的聚类解集中包含大量质量较差解,影响后续集成操作的问题,提出一种基于热点解搜索和差分进化的多目标聚类集成算法。根据热点解的概念找出聚类解集中质量较好的解,以这些解引导种群的搜索方向,加强潜在最优区域的搜索;在后续集成操作中只采用热点解及其邻域个体,去除较差解对最终结果的影响。在优化过程中采用改进的差分进化算子提高全局寻优的能力,去除编码长度不一对算子使用的影响。对3组UCI数据的测试结果表明,该算法优于2种对比算法,其RI取值提高了0.0021~0.0524,FM取值提高了0.0134~0.0591。 展开更多
关键词 多目标聚类 聚类集成 热点解 差分进化 全局寻优
下载PDF
基于DE-CStacking集成的基因表达数据分类算法 被引量:2
10
作者 高慧云 陆慧娟 +1 位作者 严珂 叶敏超 《小型微型计算机系统》 CSCD 北大核心 2019年第8期1601-1605,共5页
从基因层面对癌症进行诊断将有效提高患者的治愈率,但癌症基因表达数据集通常存在高维、小样本、高噪声并且类别不平衡等问题,对此类数据进行分类是一项具有挑战性的任务.针对这些问题,提出一种基于差分进化的代价敏感Stacking(DE-CStac... 从基因层面对癌症进行诊断将有效提高患者的治愈率,但癌症基因表达数据集通常存在高维、小样本、高噪声并且类别不平衡等问题,对此类数据进行分类是一项具有挑战性的任务.针对这些问题,提出一种基于差分进化的代价敏感Stacking(DE-CStacking)集成的基因表达数据分类算法,采用随机森林、K近邻、朴素贝叶斯作为Stacking集成的初级学习器,将代价敏感的支持向量机作为次级学习器,初级学习器的输出类概率和原始特征集作为次级学习器的输入,并采用差分进化对这些学习器的参数进行优化.通过在四个UCI的癌症基因数据上的实验对比,相对于其他传统的集成算法,DE-CStacking算法在癌症基因数据上表现出更好的泛化性能. 展开更多
关键词 Stacking集成 差分进化 代价敏感 基因表达数据
下载PDF
基于局部集成和克隆选择的多目标聚类算法 被引量:1
11
作者 曹萌萌 郭晓磊 刘晓斐 《计算机工程与设计》 北大核心 2015年第8期2234-2238,共5页
多目标聚类过程中会产生一些明显不合理的解,影响最终划分结果以及聚类类数的判断。为此,提出一种基于局部集成和克隆选择的多目标聚类算法。在聚类过程中周期性的将聚类解集划分为若干邻域,对每个邻域进行局部集成操作,剔除各个类... 多目标聚类过程中会产生一些明显不合理的解,影响最终划分结果以及聚类类数的判断。为此,提出一种基于局部集成和克隆选择的多目标聚类算法。在聚类过程中周期性的将聚类解集划分为若干邻域,对每个邻域进行局部集成操作,剔除各个类数下的不舍理划分;利用克隆选择算法的思想构建3种变异算子,推动种群的进化,分别具有增大或减小当前解的聚类类数、调整当前解样本划分情况的功能。3组人工数据集以及3组UCI数据集的实验结果表明,该算法能够得到优于对比算法的聚类结果,准确判断出合理的聚类类数,判断类数的准确率可提高0%~46.67%。 展开更多
关键词 多目标聚类 局部集成 克隆选择 聚类类数 种群进化
下载PDF
An ensemble learning classifier to discover arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction
12
作者 An Chen Junfei Cai +3 位作者 Zhilong Wang Yanqiang Han Simin Ye Jinjin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期268-276,I0008,共10页
Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performa... Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performance of materials,which makes it difficult to discover and understand the structure-property relationships at the atomic level.Here,we developed a novel and efficient ensemble learning classifier with synthetic minority oversampling technique(SMOTE) to discover all possible arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction(HER).A total of 850 doped arsenenes were collected as a database and 140 modified arsenene materials with different doping atoms and doping sites were identified as promising candidate catalysts for HER,with a machine learning prediction accuracy of 81%.Based on the results of machine learning,we proposed 13 low-cost and easily synthesized two-dimensional Fe-doped arsenene catalytic materials that are expected to contribute to high-efficient HER.The proposed ensemble method achieved high prediction accuracy,but millions of times faster to predict Gibbs free energies and only required a small amount of data.This study indicates that the presented ensemble learning classifier is capable of screening high-efficient catalysts,and can be further extended to predict other two-dimensional catalysts with delicate regulation. 展开更多
关键词 ensemble learning Implanted heteroatoms Hydrogen evolution reaction Synthetic minority oversampling technique
下载PDF
一种基于协同进化方法的聚类集成算法
13
作者 董红斌 张广江 +1 位作者 逄锦伟 韩启龙 《山东大学学报(工学版)》 CAS 北大核心 2015年第2期1-9,共9页
针对单一聚类算法存在的不能泛化的问题,将集成学习技术应用于聚类算法中,集成学习技术可以显著提高学习系统的泛化能力。提出了1种基于粒子群和遗传算法的协同进化聚类集成算法,粒子群算法保证算法快速收敛,遗传算法全局搜索扩大搜索范... 针对单一聚类算法存在的不能泛化的问题,将集成学习技术应用于聚类算法中,集成学习技术可以显著提高学习系统的泛化能力。提出了1种基于粒子群和遗传算法的协同进化聚类集成算法,粒子群算法保证算法快速收敛,遗传算法全局搜索扩大搜索范围,提高了聚类的性能和收敛速度。将本研究提出的算法在多个UCI数据集上进行试验验证,结果表明该算法是有效的。 展开更多
关键词 聚类 聚类集成 粒子群优化算法 遗传算法 协同进化 协同聚类集成
原文传递
差分进化算法优化的图注意力网络集成研究
14
作者 刘鹏飞 张伟峰 何克晶 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期41-48,共8页
为进一步提升图分类算法的性能和稳健性,提出了差分进化算法优化的图注意力网络集成.首先,通过划分原始样本让不同的基学习器关注数据的不同区域;其次,利用差分进化算法良好的搜索能力,以分类器集成的分类错误率为目标函数优化基学习器... 为进一步提升图分类算法的性能和稳健性,提出了差分进化算法优化的图注意力网络集成.首先,通过划分原始样本让不同的基学习器关注数据的不同区域;其次,利用差分进化算法良好的搜索能力,以分类器集成的分类错误率为目标函数优化基学习器的权重向量;最后,在权重向量基础上综合各基学习器的输出作为分类器集成的总体输出.实验引入引文数据集Cora进行验证,与基础的图注意力网络模型相比,所提出的集成算法的分类性能和稳健性有一定的改进.在固定超参数时其准确率比内部基学习器平均准确率高0.001~0.011,以0~0.005的差距持平或领先于多数投票法分类器集成;在随机超参数时其准确率比内部基学习器平均准确率高0.053~0.173,以0.003~0.006的优势领先于多数投票法分类器集成;此外在参数扰动和数据扰动下的集成训练时长分析也得出了有意义的结论. 展开更多
关键词 分类器集成 差分进化 图神经网络 注意力机制
下载PDF
Recent Advances in Particle Swarm Optimization for Large Scale Problems
15
作者 Danping Yan Yongzhong Lu +3 位作者 Min Zhou Shiping Chen David Levy Jicheng You 《Journal of Autonomous Intelligence》 2018年第1期22-35,共14页
Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for ... Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for these large scale problems and how to expand the scalability of existing optimization algorithms have posed further challenges in the domain of bio-inspired computation.So addressing these complex large scale problems to produce truly useful results is one of the presently hottest topics.As a branch of the swarm intelligence based algorithms,particle swarm optimization (PSO) for coping with large scale problems and its expansively diverse applications have been in rapid development over the last decade years.This reviewpaper mainly presents its recent achievements and trends,and also highlights the existing unsolved challenging problems and key issues with a huge impact in order to encourage further more research in both large scale PSO theories and their applications in the forthcoming years. 展开更多
关键词 SWARM INTELLIGENCE particle SWARM OPTIMIZATION large scale OPTIMIZATION problem cooperative coevolution ensemble evolution static GROUPING METHOD dynamic GROUPING METHOD
下载PDF
2000~2019年中国PM2.5时空演化特征 被引量:22
16
作者 夏晓圣 汪军红 +1 位作者 宋伟东 程先富 《环境科学》 EI CAS CSCD 北大核心 2020年第11期4832-4843,共12页
本研究利用PM2.5实测数据、MERRA-2 AOD与PM2.5再分析数据、气象因子和夜间灯光等数据,基于极限梯度提升、梯度提升、随机森林模型和Stacking模型融合技术提出了PM2.5浓度组合估算模型.在此基础上,从年、季、月尺度综合分析了2000~2019... 本研究利用PM2.5实测数据、MERRA-2 AOD与PM2.5再分析数据、气象因子和夜间灯光等数据,基于极限梯度提升、梯度提升、随机森林模型和Stacking模型融合技术提出了PM2.5浓度组合估算模型.在此基础上,从年、季、月尺度综合分析了2000~2019年中国PM2.5时空变化特征.结果表明:(1)组合模型实现了中国2000年以来PM2.5逐月浓度的可靠估算.(2)2000~2019年中国PM2.5年均浓度呈快速增加→保持稳定→显著下降的趋势,2007年和2014年分别为增加到稳定和稳定到下降的转折点.PM2.5月均浓度呈先降后升的"U"型趋势,最小值在7月,最大值在12月.(3)自然地理条件和人类活动奠定了中国PM2.5浓度年度空间格局变化的基础,气象条件的逐月变化决定了PM2.5浓度月度空间格局变化的主基调.(4)2000~2014年中国PM2.5浓度的标准差椭圆中心向东移动,2014~2018年椭圆中心向西移动.1~3月椭圆中心向西移动,4~9月椭圆中心先北移后南移,9~12月椭圆中心向东移动. 展开更多
关键词 PM2.5 组合估算模型 多时间尺度 时空演化特征 中国
原文传递
基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测 被引量:22
17
作者 张亚超 刘开培 +1 位作者 秦亮 方仍存 《电网技术》 EI CSCD 北大核心 2016年第7期2045-2051,共7页
针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子... 针对风电功率序列的不确定性和随机性特征,提出一种基于聚类经验模态分解-样本熵和优化极限学习机的多步区间预测模型。首先,利用聚类经验模态分解-样本熵方法将原始风电功率序列分解为一系列复杂度差异明显的子序列。然后,分别对各子序列建立基于上下界直接估量的区间预测模型。为分析不同区间构造的差异,提出一种体现训练目标值偏离区间范围影响的新型区间预测评估指标作为目标函数,并采用基于混沌萤火虫结合多策略融合自适应差分进化的优化算法寻求其最优解,以提高模型预测性能。最后,以某一风电场实际功率数据为算例,验证了所提模型能获得可靠优良的多步区间预测结果,可为风电功率多步不确定性预测提供一种新的有效途径。 展开更多
关键词 多步区间预测 聚类经验模态分解-样本熵 极限学习机 多策略自适应差分进化
下载PDF
基于集合经验模态分解和差分进化算法优化BP神经网络的船舶交通流预测 被引量:11
18
作者 肖进丽 李晓磊 《大连海事大学学报》 CAS CSCD 北大核心 2018年第2期9-14,共6页
针对船舶交通流时间序列的非线性和非平稳性特点,设计一种结合集合经验模态分解(ensemble empirical mode decomposition,EEMD)和差分进化算法优化BP神经网络(back propagation neural network optimized with differential evolution a... 针对船舶交通流时间序列的非线性和非平稳性特点,设计一种结合集合经验模态分解(ensemble empirical mode decomposition,EEMD)和差分进化算法优化BP神经网络(back propagation neural network optimized with differential evolution algorithm,DEBPNN)的船舶交通流组合预测模型(EEMD-DEBPNN).首先,利用EEMD算法降低船舶交通流时间序列的非平稳性;然后,对EEMD分解后获得的各非线性分量采用DEBPNN模型(先采用DE算法对BPNN的初始权值和阈值进行预寻优,再利用预寻优获得的初始权值和阈值训练BP神经网络得到最优的权值和阈值)进行预测;最后,再将各分量预测值进行叠加即得到最终预测结果.基于长江某港口航道船舶月交通流数据,将该组合模型与BPNN、DEBPNN模型进行实例对比分析.结果表明,EEMD-DEBPNN较DEBPNN、BPNN模型的预测精度更高. 展开更多
关键词 船舶交通流 集合经验模态分解(EEMD) 差分进化算法(DE) BP神经网络(BPNN) 组合预测
原文传递
变邻域分解多目标自适应差分进化算法 被引量:7
19
作者 刘志君 高亚奎 +2 位作者 章卫国 王晓光 袁燎原 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第11期1492-1501,共10页
分解方法是处理复杂问题常用的一种手段,而差分进化算法被广泛地应用于多目标优化问题(multiobjective optimization problems,MOP),为了克服经典差分进化算法和分解方法的缺陷,本文提出了一种自适应差分进化算法和变邻域分解方法相结... 分解方法是处理复杂问题常用的一种手段,而差分进化算法被广泛地应用于多目标优化问题(multiobjective optimization problems,MOP),为了克服经典差分进化算法和分解方法的缺陷,本文提出了一种自适应差分进化算法和变邻域分解方法相结合的新颖算法一ADEMO/D-ENS,该算法采用Tchebycheff方法将多目标优化问题分解成多维标量优化子问题,并利用邻域子问题的信息进行优化,基于邻域种群集依概率自适应选择邻域种群规模;同时采用概率匹配(]probability match,PM)自适应方法从差分策略池中选择差分进化策略;同时分析了算法的复杂度;最后,通过和经典的非支配排序遗传算法(non-dominated sorting genetic algorithmsⅡ,NSGA-Ⅱ)和多目标差分进化算法(multi-objective differential evolution algorithm,MODE)仿真对比,说明ADEMO/D-ENS方法可以更有效的处理多目标优化问题. 展开更多
关键词 分解 邻域种群集 概率匹配方法 差分进化 多目标优化 复杂度分析
下载PDF
多普勒天气雷达资料同化对冬季暴雨模拟的影响研究 被引量:7
20
作者 杨雨轩 张立凤 +1 位作者 张斌 李逍 《大气科学》 CSCD 北大核心 2018年第5期1096-1108,共13页
采用基于本征正交分解的四维集合变分同化(POD-4DEn Var)方法,利用梅州站的多普勒天气雷达资料和NCEP资料,对2015年12月9日一次华南冬季暴雨过程进行同化试验,探讨了同化不同的雷达观测要素对暴雨模拟的影响。结果表明:同化多普勒天气... 采用基于本征正交分解的四维集合变分同化(POD-4DEn Var)方法,利用梅州站的多普勒天气雷达资料和NCEP资料,对2015年12月9日一次华南冬季暴雨过程进行同化试验,探讨了同化不同的雷达观测要素对暴雨模拟的影响。结果表明:同化多普勒天气雷达资料有利于削弱控制试验偏强降水的模拟结果,改善降水分布结构;同化不同的雷达观测要素得到的模拟结果不同,同时同化径向风和反射率的降水模拟结果最好。同化试验对降水模拟结果的改善主要通过调整初始时刻的风场和水汽条件来实现,一方面减弱偏南风和偏东风在暴雨区的辐合,阻碍海上暖湿气流对暴雨区的水汽输送,另一方面直接削弱暴雨区的水汽条件,大幅降低水汽混合比。同化试验相对于控制试验的同化增量远大于不同雷达观测要素的同化试验之间的分析场差异,这表明同化不同的雷达观测要素对初始风场和水汽条件的调整呈现类似的特征。虽然同化试验的初始场存在较小的差异,但随着模式积分,16 h后模拟降水出现了明显差异。分析同化试验之间的初始偏差演变发现,850~700 h Pa的平均垂直速度偏差和雨水混合比偏差在模式积分至16 h开始急剧增长,这种变量偏差的急剧增长与逐时降水偏差的迅速增加一致,是降水偏差增长的直接原因。另外,这两个变量偏差的增大,也伴随着偏差能量的增大,变量偏差增长最明显的时段为偏差能量增幅最大的时段,且偏差能量迅速增长早于变量偏差和降水偏差的迅速增长,变量偏差增长最明显的区域为偏差能量梯度较大的区域。 展开更多
关键词 四维集合变分同化 雷达资料 冬季暴雨 初始偏差演变
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部