We here study the occurrence rate,probability function of velocity and duration of earthward bursty bulk flows(BBFs) in the Inner Plasma Sheet(IPS,β】0.5) using the data of Cluster in 2001 and 2002.The occurrence rat...We here study the occurrence rate,probability function of velocity and duration of earthward bursty bulk flows(BBFs) in the Inner Plasma Sheet(IPS,β】0.5) using the data of Cluster in 2001 and 2002.The occurrence rate of earthward BBFs increases with distance from the Earth up to ?19 RE,which is in agreement with the previous observations of the radial evolution of BBFs.About 54% of earthward BBFs in expansion phase have a velocity larger than 600 km/s,whereas only 38% of earthward BBFs in growth and recovery phases have a velocity larger than 600 km/s.The average velocity of earthward BBFs in expansion phase is 732 km/s,larger than those in growth phase(631 km/s) and recovery phase(617 km/s).The durations of earthward BBFs decrease with the decrease of downtail distance from Earth due to the braking of earthward BBFs.The duration of earthward BBFs in expansion phase is larger than that in growth and recovery phases.The average durations in growth,expansion,and recovery phases are respectively 49.3,71.5,and 47.6 s.Therefore,the ratios of transports of energy of earthward BBFs in growth,expansion,and recovery phases can be estimated to be 0.51:1:0.47.Thus,the earthward BBFs in the expansion phase have the largest capability of the transport of energy and can produce the largest braking effects,such as inertial currents and auroral activities.展开更多
Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on ...Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on structural input energy based on the elastic and inelastic energy responses of structures.A comparison of the input energy spectra between the hanging wall and the footwall reveal that the structural input energy on the hanging wall is not amplified due to the short duration and low peak ground velocity to acceleration ratio(V/A).However,the larger demand of structural input energy on the footwall in the range of medium and long periods is observed and the demand increases up to 50% relative to the average level of structural input energy for rupture distances larger than 30 km.The importance of considering the footwall effect on structural input energy when comparing ground motions in the range of medium and long periods is recognized.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.40931054, 40704028 and 40523006)National Basic Research Program of China (Grant No.2006CB8062305)Specialized Research Fund for State Key Laboratories
文摘We here study the occurrence rate,probability function of velocity and duration of earthward bursty bulk flows(BBFs) in the Inner Plasma Sheet(IPS,β】0.5) using the data of Cluster in 2001 and 2002.The occurrence rate of earthward BBFs increases with distance from the Earth up to ?19 RE,which is in agreement with the previous observations of the radial evolution of BBFs.About 54% of earthward BBFs in expansion phase have a velocity larger than 600 km/s,whereas only 38% of earthward BBFs in growth and recovery phases have a velocity larger than 600 km/s.The average velocity of earthward BBFs in expansion phase is 732 km/s,larger than those in growth phase(631 km/s) and recovery phase(617 km/s).The durations of earthward BBFs decrease with the decrease of downtail distance from Earth due to the braking of earthward BBFs.The duration of earthward BBFs in expansion phase is larger than that in growth and recovery phases.The average durations in growth,expansion,and recovery phases are respectively 49.3,71.5,and 47.6 s.Therefore,the ratios of transports of energy of earthward BBFs in growth,expansion,and recovery phases can be estimated to be 0.51:1:0.47.Thus,the earthward BBFs in the expansion phase have the largest capability of the transport of energy and can produce the largest braking effects,such as inertial currents and auroral activities.
基金Special Research Foundation of Earthquake Industry under Grant No. 201208013National Natural Science Foundation of China under Grant No. 51008101 & 51078117
文摘Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on structural input energy based on the elastic and inelastic energy responses of structures.A comparison of the input energy spectra between the hanging wall and the footwall reveal that the structural input energy on the hanging wall is not amplified due to the short duration and low peak ground velocity to acceleration ratio(V/A).However,the larger demand of structural input energy on the footwall in the range of medium and long periods is observed and the demand increases up to 50% relative to the average level of structural input energy for rupture distances larger than 30 km.The importance of considering the footwall effect on structural input energy when comparing ground motions in the range of medium and long periods is recognized.