Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellen...Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellent electrochemical properties. Extracellular electron transfer pathways at the cell/GO interface were systematically investigated, suggesting both direct electron transfer and electron mediators are involved in the GO reduction.展开更多
There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water dept...There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m-2. The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 ft external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Eseherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.展开更多
AIM: To transfer human HGF gene into the liver of rats by direct electroporation as a means to prevent radiationinduced liver damage.METHODS: Rat whole liver irradiation model was accomplished by intra-operative appro...AIM: To transfer human HGF gene into the liver of rats by direct electroporation as a means to prevent radiationinduced liver damage.METHODS: Rat whole liver irradiation model was accomplished by intra-operative approach. HGF plasmid was injected into liver and transferred by electroporation using a pulse generator. Control rats (n = 8) received electrogene therapy (EGT) vehicle plasmid and another 8rats received HGF-EGT 100 μg 48 h before WLIR.Expression of HGF in liver was examined by RT-PCR and ELISA methods. Apoptosis was determined by TUNEL assay. Histopathology was evaluated 10 wk after whole liver irradiation.RESULTS: Marked decrease of apoptotic cells and downregulation of transforming growth factor-beta 1 (TGF-β1)mRNA were observed in the HGF-EGT group 2 d after liver irradiation compared to control animals. Less evidence of radiation-induced liver damage was observed morphologically in liver specimen 10 wk after liver irradiation and longer median survival time was observed from HGF-EGT group (14 wk) compared to control rats (5 wk). (P = 0.031).CONCLUSION: For the first time it has been demonstrated that HGF-EGT would prevent liver from radiation-induced liver damage by preventing apoptosis and down-regulation of TGF-β1.展开更多
In order to enhance the electrogenerative leaching rate of chalcopyrite concentrate reasonably, the principle of generative process was applied to simultaneous leaching of chalcopyrite concentrate and MnO2. The result...In order to enhance the electrogenerative leaching rate of chalcopyrite concentrate reasonably, the principle of generative process was applied to simultaneous leaching of chalcopyrite concentrate and MnO2. The results show that Cu^2+ and Mn^2+ in addition to electrical energy could be acquired in the simultaneous electrogenerative leaching process. The leaching cell has the open circuit potential of about 1.0 V and gains quantity of electricity of about 700 C. The optimum leaching rates of Cu^2+ and Mn^2+ are 23.10% and 22.1%, respectively after electrogenera- tive leaching for about 10 h under the present conditions.展开更多
At the sediment-water interfaces,filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors.These multicellular bacteria belonging to th...At the sediment-water interfaces,filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors.These multicellular bacteria belonging to the family Desulfobulbaceae thus form a biogeobattery that mediates redox processes between multiple elements.Cable bacteria were first reported in 2012.In the past years,cable bacteria have been found to be widely distributed across the globe.Their potential in shaping the surface water environments has been extensively studied but is not fully elucidated.In this review,the biogeochemical characteristics,conduction mechanisms,and geographical distribution of cable bacteria,as well as their ecological effects,are systematically reviewed and discussed.Novel insights for understanding and applying the role of cable bacteria in aquatic ecology are summarized.展开更多
Microbial electrochemical systems are a promising green and sustainable technology that can transform waste into electricity.Improving conversion efficiency and lowering system costs,particularly for elec-trodes,are t...Microbial electrochemical systems are a promising green and sustainable technology that can transform waste into electricity.Improving conversion efficiency and lowering system costs,particularly for elec-trodes,are the primary directions that promote practical application.Cellulose sponges made from wood pulp have been industrially mass-produced in various application scenarios due to their porosity and green sustainability.In this study,the three-dimensional(3D)porous cellulose sponges carbon(CSC)was obtained by directly carbonizing cellulose sponges at different temperatures(600,700,800,900,1000,and 1100℃).It has been successfully used as a high-performance anode in microbial fuel cells(MFCs).The carbonization temperature significantly impacted the materials’specific surface area,con-ductivity,and capacitance.The greater the anode material’s carbonization temperature,the lower the charge transfer resistance and the higher the maximum power density(CSC-1100,4.1±0.1 W m^(-2)).The CSC-700's maximum power density(3.62±0.11 W m^(-2))was the highest power density reported to date among lignocellulose-based anodes with relatively low energy consumption.The pleated multilayer porous surface promotes microbial adhesion and can build thicker biofilms with the highest biomass of 2661±117μg cm^(-2)(CSC-1100)and containing 86%electrogenic bacteria(Geobacter).To investigate the effect of conducting polymers on the material’s surface,we introduced polyaniline and polypyrrole.We found that the CSC-1000/PPy bioanodes produced a maximum power density(4.18±0.05 W m^(-2)),slightly higher than of without polypyrrole-modified(CSC-1000,3.99±0.06 W m^(-2)),indicating that the CSCs anode surface had excellent electron transfer efficiency and could achieve the same amount of energy as the polypyrrole surface.This study introduced a promising method for fabricating high-performance anodes using low-cost,industrialized,and sustainable materials.展开更多
In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduc...In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process. The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.展开更多
The present study aimed at isolation characterization and evaluation of electrogenic bacteria for electricity generation using waste water. In this context, waste water samples were collected from University of Nizwa ...The present study aimed at isolation characterization and evaluation of electrogenic bacteria for electricity generation using waste water. In this context, waste water samples were collected from University of Nizwa waste water treatment plant. A total of eight distinct bacterial isolates were isolated from these samples by serial dilution and plating on LB Agar medium. The bacterial isolates were than grown at different temperatures and pH. DNA from bacterial samples was isolated and 16S rRNA gene amplification was carried out. The 16S rRNA gene PCR products were directly sequenced and the resulting sequence was blasted using BLASTn. Based on BLAST results, the bacterial strains were identified. The bacteria were used in different combinations to generate electricity from waste water in microbial fuel cells constructed using plastic bottles. The microbial isolates were found to produce varying levels of currents and their electrogenic potential in waste water was observed to increase with the passage of time.展开更多
A dual cell system was used to study the electrogenerative leaching sphalerite-MnO2 in the presence and absence of Acidithiobacillus thiooxidans (A. thiooxidans). The polarization of anode and cathode, and the relatio...A dual cell system was used to study the electrogenerative leaching sphalerite-MnO2 in the presence and absence of Acidithiobacillus thiooxidans (A. thiooxidans). The polarization of anode and cathode, and the relationship between the electric quantity (Q) and some factors, such as the dissolved rate of Zn2+ and Fe2+, and the time in the bio-electro-generating simultaneous leaching (BEGL) and electro-generating simultaneous leaching (EGL) were studied. A three-electrode system was applied to studying anodic and cathodic self-corrosion current, which was inappreciable compared with the galvanic current between sphalerite and MnO2. The results show that the dissolved Zn2+ in the presence of A. thiooxidans is nearly 43% higher than that in the absence of A. thiooxidans; the electrogenerative quantity in the former is about 150% more than that in the latter. The accumulated sulfur on the surface of sulfides produced in the electrogenerative leaching process can be oxidized in the presence of A. thiooxidans, and the ratio of biologic electric quantity reaches 27.9% in 72 h.展开更多
Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research.Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform...Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research.Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings,but the signal attenua-tion limits these extracellular devices to record subthreshold activities.In recent decade,in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysi-ology.With the unique three-dimensional nanotopography and advanced penetration strategies,high-throughput and high-fidelity action potential like signal recordings is expected to be realized.This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces,penetration strategies,active/pas-sive nanodevices,systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals.Further,the opportunities,challenges and broad prospects of in-cell nanoelectronics are prospected,expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.展开更多
A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leachin...A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leaching system are similar, and chlorine ion is involved in the electrogenerative leaching process of sulfide minerals directly. The output power increases with the increase of Cl^- concentration. The influence on the electrogenerative leaching rate decreases when the Cl^- concentration reaches a certain value. The mechanisms of anodic reaction are deduced based on the reasonable hypothesis, and kinetic equations with respect to chlorine ions for each sulfide mineral are obtained. The kinetic equations show that when concentration of Cl^- is relatively low, the electrogenerative leaching rates are predicted to have 2/5,3/7,1/3 and 1/3 order dependence on Cl^- concentration for chalcopyrite concentrate,nickel concentrate, sphalerite and galena. As concentration of Cl^- increases, the correlative dependence of electrogenerative leaching rate on concentration of Cl^- becomes weak.展开更多
基金Y. L. acknowledges the financial support of this work in part by national science foundation (NSF) (No. CBET 1034222) and faculty research funds granted by the University of California, Santa Cruz. XPS was performed at the Center for Nanoscale Systems at Harvard University, which is supported by the NSF (No. ECS-0335765). We thank H. Lin of Harvard University for technical assistance. Work at Lawrence Livermore National Laboratory was conducted under Contract No. DE-AC52-07NA27344.
文摘Graphene oxide (GO) can be reduced to graphene in a normal aerobic setup under ambient conditions as mediated by microbial respiration of Shewanella cells. The microbially-reduced graphene (MRG) exhibited excellent electrochemical properties. Extracellular electron transfer pathways at the cell/GO interface were systematically investigated, suggesting both direct electron transfer and electron mediators are involved in the GO reduction.
基金Supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(No.KZCXZ-EW-402)the Hundred Talents Program of Chinese Academy of Sciences+1 种基金the International S&T Cooperation Program of China(No.2011DFB91710)the China Postdoctoral Science Foundation(Nos.2011M500410 and 2012T50142)
文摘There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m-2. The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 ft external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Eseherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.
基金Supported by National Science Council grant NSC-91-275-9075-001 for the development of Boron Neutron Capture Therapy for Hepatoma Treatment
文摘AIM: To transfer human HGF gene into the liver of rats by direct electroporation as a means to prevent radiationinduced liver damage.METHODS: Rat whole liver irradiation model was accomplished by intra-operative approach. HGF plasmid was injected into liver and transferred by electroporation using a pulse generator. Control rats (n = 8) received electrogene therapy (EGT) vehicle plasmid and another 8rats received HGF-EGT 100 μg 48 h before WLIR.Expression of HGF in liver was examined by RT-PCR and ELISA methods. Apoptosis was determined by TUNEL assay. Histopathology was evaluated 10 wk after whole liver irradiation.RESULTS: Marked decrease of apoptotic cells and downregulation of transforming growth factor-beta 1 (TGF-β1)mRNA were observed in the HGF-EGT group 2 d after liver irradiation compared to control animals. Less evidence of radiation-induced liver damage was observed morphologically in liver specimen 10 wk after liver irradiation and longer median survival time was observed from HGF-EGT group (14 wk) compared to control rats (5 wk). (P = 0.031).CONCLUSION: For the first time it has been demonstrated that HGF-EGT would prevent liver from radiation-induced liver damage by preventing apoptosis and down-regulation of TGF-β1.
文摘In order to enhance the electrogenerative leaching rate of chalcopyrite concentrate reasonably, the principle of generative process was applied to simultaneous leaching of chalcopyrite concentrate and MnO2. The results show that Cu^2+ and Mn^2+ in addition to electrical energy could be acquired in the simultaneous electrogenerative leaching process. The leaching cell has the open circuit potential of about 1.0 V and gains quantity of electricity of about 700 C. The optimum leaching rates of Cu^2+ and Mn^2+ are 23.10% and 22.1%, respectively after electrogenera- tive leaching for about 10 h under the present conditions.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2020B1111380003)Guangdong Provincial Programs for Science and Technology Development(2022A0505030006)+6 种基金National Natural Science Foundation of China(31970110,32370111)GDAS’Special Project of Science and Technology Development(2021GDASYL-20210103022)State Key Laboratory of Applied Microbiology Southern China(Grant SKLAM005-2020)Danish National Research Foundation(DNRF136)Zhenyu Wang(File No.202208080044)is financially supported by the China Scholarship CouncilLeonid Digel was supported by FEMS Research and Training Grant(1725)EMBO Scientific Exchange grant(9720)for a visit to the UFZ in Leipzig,Germany.
文摘At the sediment-water interfaces,filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors.These multicellular bacteria belonging to the family Desulfobulbaceae thus form a biogeobattery that mediates redox processes between multiple elements.Cable bacteria were first reported in 2012.In the past years,cable bacteria have been found to be widely distributed across the globe.Their potential in shaping the surface water environments has been extensively studied but is not fully elucidated.In this review,the biogeochemical characteristics,conduction mechanisms,and geographical distribution of cable bacteria,as well as their ecological effects,are systematically reviewed and discussed.Novel insights for understanding and applying the role of cable bacteria in aquatic ecology are summarized.
基金supported by the National Key Research and Development Program of China(No.2018YFA0901300)the Natural Science Foundation of Heilongjiang Province-Outstanding Youth Foundation(YQ2022E033)+3 种基金the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022DS07,ES202224 andES202310)supported by the National Natural Science Foundation Youth Fund(No.51908403)the Fundamental Research Funds for the Central Universities(No.RFCU5710010122)the Youth Fund of Tianjin Science and Technology Project(No.20JCQNJC01640).
文摘Microbial electrochemical systems are a promising green and sustainable technology that can transform waste into electricity.Improving conversion efficiency and lowering system costs,particularly for elec-trodes,are the primary directions that promote practical application.Cellulose sponges made from wood pulp have been industrially mass-produced in various application scenarios due to their porosity and green sustainability.In this study,the three-dimensional(3D)porous cellulose sponges carbon(CSC)was obtained by directly carbonizing cellulose sponges at different temperatures(600,700,800,900,1000,and 1100℃).It has been successfully used as a high-performance anode in microbial fuel cells(MFCs).The carbonization temperature significantly impacted the materials’specific surface area,con-ductivity,and capacitance.The greater the anode material’s carbonization temperature,the lower the charge transfer resistance and the higher the maximum power density(CSC-1100,4.1±0.1 W m^(-2)).The CSC-700's maximum power density(3.62±0.11 W m^(-2))was the highest power density reported to date among lignocellulose-based anodes with relatively low energy consumption.The pleated multilayer porous surface promotes microbial adhesion and can build thicker biofilms with the highest biomass of 2661±117μg cm^(-2)(CSC-1100)and containing 86%electrogenic bacteria(Geobacter).To investigate the effect of conducting polymers on the material’s surface,we introduced polyaniline and polypyrrole.We found that the CSC-1000/PPy bioanodes produced a maximum power density(4.18±0.05 W m^(-2)),slightly higher than of without polypyrrole-modified(CSC-1000,3.99±0.06 W m^(-2)),indicating that the CSCs anode surface had excellent electron transfer efficiency and could achieve the same amount of energy as the polypyrrole surface.This study introduced a promising method for fabricating high-performance anodes using low-cost,industrialized,and sustainable materials.
文摘In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process. The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.
文摘The present study aimed at isolation characterization and evaluation of electrogenic bacteria for electricity generation using waste water. In this context, waste water samples were collected from University of Nizwa waste water treatment plant. A total of eight distinct bacterial isolates were isolated from these samples by serial dilution and plating on LB Agar medium. The bacterial isolates were than grown at different temperatures and pH. DNA from bacterial samples was isolated and 16S rRNA gene amplification was carried out. The 16S rRNA gene PCR products were directly sequenced and the resulting sequence was blasted using BLASTn. Based on BLAST results, the bacterial strains were identified. The bacteria were used in different combinations to generate electricity from waste water in microbial fuel cells constructed using plastic bottles. The microbial isolates were found to produce varying levels of currents and their electrogenic potential in waste water was observed to increase with the passage of time.
基金Project(50874119) supported by the National Natural Science Foundation of ChinaProject supported by the Post doctoral Program of Central South University, China
文摘A dual cell system was used to study the electrogenerative leaching sphalerite-MnO2 in the presence and absence of Acidithiobacillus thiooxidans (A. thiooxidans). The polarization of anode and cathode, and the relationship between the electric quantity (Q) and some factors, such as the dissolved rate of Zn2+ and Fe2+, and the time in the bio-electro-generating simultaneous leaching (BEGL) and electro-generating simultaneous leaching (EGL) were studied. A three-electrode system was applied to studying anodic and cathodic self-corrosion current, which was inappreciable compared with the galvanic current between sphalerite and MnO2. The results show that the dissolved Zn2+ in the presence of A. thiooxidans is nearly 43% higher than that in the absence of A. thiooxidans; the electrogenerative quantity in the former is about 150% more than that in the latter. The accumulated sulfur on the surface of sulfides produced in the electrogenerative leaching process can be oxidized in the presence of A. thiooxidans, and the ratio of biologic electric quantity reaches 27.9% in 72 h.
基金The work is supported in part by the National Natural Science Foundation of China(Grant Nos.82061148011,61771498)Guangdong Basic and Applied Basic Research Foundation(Grant No.2020A1515010665)+2 种基金Department of Science and Technology of Guangdong Province Project(Grant No.2020B1212060030)Foundation of Sun Yat-sen University(Grant Nos.76120-18821104,20lgpy47,20lgzd14)Open Project of Chinese Academy of Sciences(Grant No.SKT2006).
文摘Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research.Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings,but the signal attenua-tion limits these extracellular devices to record subthreshold activities.In recent decade,in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysi-ology.With the unique three-dimensional nanotopography and advanced penetration strategies,high-throughput and high-fidelity action potential like signal recordings is expected to be realized.This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces,penetration strategies,active/pas-sive nanodevices,systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals.Further,the opportunities,challenges and broad prospects of in-cell nanoelectronics are prospected,expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.
基金Project(50374077) supported by the National Natural Science Foundation of China
文摘A dual cell system was used to study the influence of chloride ions on the electrogenerative leaching of sulfide minerals. The results show that the influences of chloride ions on a series of electrogenerative leaching system are similar, and chlorine ion is involved in the electrogenerative leaching process of sulfide minerals directly. The output power increases with the increase of Cl^- concentration. The influence on the electrogenerative leaching rate decreases when the Cl^- concentration reaches a certain value. The mechanisms of anodic reaction are deduced based on the reasonable hypothesis, and kinetic equations with respect to chlorine ions for each sulfide mineral are obtained. The kinetic equations show that when concentration of Cl^- is relatively low, the electrogenerative leaching rates are predicted to have 2/5,3/7,1/3 and 1/3 order dependence on Cl^- concentration for chalcopyrite concentrate,nickel concentrate, sphalerite and galena. As concentration of Cl^- increases, the correlative dependence of electrogenerative leaching rate on concentration of Cl^- becomes weak.