Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only d...Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials.展开更多
With high effective screen-printing technique, a new triode field emission display (FED)with enhanced petaling cold cathode was fabricated. For enhancing the field emission performance,a series of improved measures wa...With high effective screen-printing technique, a new triode field emission display (FED)with enhanced petaling cold cathode was fabricated. For enhancing the field emission performance,a series of improved measures was adopted in the fabrication course. Seen from the fabrication structure of enhanced petaling cold cathode,the bar conducting electrode and the petaling bottom electrode were fabricated with the sintered silver slurry on cathode glass faceplate. The luminescence image with green phosphor was displayed for the sealed enhanced petaling cold cathode FED. The measured results showed that the enhanced petaling cold cathode had good field emission performance. The enhanced petaling cold cathode FED possessed low turn-on electric-field of 1. 95 V /μm,large emission current of 1 389. 6 μA,and high luminance brightness of 1 520 cd /m2 .展开更多
基金This work was supported by National Natural Science Foundation of China(Grant Nos.21805161,21808121,and 21825501)National Key Research and Development Program(Grant No.2016YFA0202500)+1 种基金China Post-Doctoral Science Foundation(Grant Nos.2020M670155 and 2020T130054)the Tsinghua University Initiative Scientific Research Program.
文摘Lithium ion batteries have achieved extensive applications in portable electronics and recently in electronic vehicles since its commercialization in 1990s.The vast applications of lithium ion batteries are not only derived from the innovation in electrochemistry based on emerging energy materials and chemical engineering science,but also the technological advances in the powder technologies for electrode processing and cell fabrication.Revealing the effects of powder technology on electrode microstructure evolution during electrode processing is with critical value to realize the superior electrochemical performance.This review presents the progress in understanding the basic principles of the materials processing technologies for electrodes in lithium ion batteries.The impacts of slurry mixing and coating,electrode drying,and calendering on the electrode characteristics and electrochemical performance are comprehensively analyzed.Conclusion and outlook are drawn to shed fresh lights on the further development of efficient lithium ion batteries by advancing powder technologies and related advanced energy materials.
基金National Natural Science Foundations of China(No.60976058,No.61274078)Natural Science Research Project of Henan Province Education Department,China(No.2009B510019)
文摘With high effective screen-printing technique, a new triode field emission display (FED)with enhanced petaling cold cathode was fabricated. For enhancing the field emission performance,a series of improved measures was adopted in the fabrication course. Seen from the fabrication structure of enhanced petaling cold cathode,the bar conducting electrode and the petaling bottom electrode were fabricated with the sintered silver slurry on cathode glass faceplate. The luminescence image with green phosphor was displayed for the sealed enhanced petaling cold cathode FED. The measured results showed that the enhanced petaling cold cathode had good field emission performance. The enhanced petaling cold cathode FED possessed low turn-on electric-field of 1. 95 V /μm,large emission current of 1 389. 6 μA,and high luminance brightness of 1 520 cd /m2 .