The polyaniline (PANI) films doped with complex acid (sulfuric acid and sulfosalicylic acid) were prepared using the potentiostatic method on bare nickel flake (NF) and flexible polyethylene terephthalate (PET...The polyaniline (PANI) films doped with complex acid (sulfuric acid and sulfosalicylic acid) were prepared using the potentiostatic method on bare nickel flake (NF) and flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. The contents of the PANI films,surface elements, electrochromic property and electrical conductivity were characterized by energy dispersive X-ray spectrometer (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experimental results show that differences exist among cycle stability, redox reversibility and response time of polyaniline films on these two kinds of substrates, but the electrochromic phenomenon of the PANI films is in substantial agreement. The equilibrium transmittance spectra in the visible region (400-800 nm) for the PANI film on flexible PET/ITO substrate was obtained at different applied potential from -0.4 to 1.5 V. The results show that the transmittance of the PANI film by applying voltage is adjustable in a row and has excellent electrochromic performance.展开更多
Polyaniline (PANI) onto indium-doped tin-oxide (ITO)-coated glass samples were prepared by electroopolymerization in 0.5 M H<sub>2</sub>SO<sub>4</sub> solution. Structure and morphology charact...Polyaniline (PANI) onto indium-doped tin-oxide (ITO)-coated glass samples were prepared by electroopolymerization in 0.5 M H<sub>2</sub>SO<sub>4</sub> solution. Structure and morphology characterization of the PANI films demonstrated that the films were grown onto ITO substrates in the form of polycrystalline microbelts separated by micropores. By analysing the UV-Vis absorption spectra of the PANI films, the energy bandgap was found to be approximately 2.75 eV. The PANI/ITO films exhibited a good reversible electrochromic display (ECD) performance when cycled in 0.1 M LiClO<sub>4</sub> + pro-pylene carbonate. The response time of the ECD coloration was found to be as small as 15 s and the coloration efficiency was found to be 8.85 cm<sup>2</sup> C<sup>-1</sup>. After 100 cycles of the ECD performance, the cyclic voltammetry curve of the working electrode maintained unchanged. This demonstrates that the electropolymerized PANI films can be served as a good candidate for ECD applications, taking advantage of their excellent properties in terms of chemical stability.展开更多
基金Funded by the National Natural Science Foundation of China (No.201760 66)
文摘The polyaniline (PANI) films doped with complex acid (sulfuric acid and sulfosalicylic acid) were prepared using the potentiostatic method on bare nickel flake (NF) and flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates. The contents of the PANI films,surface elements, electrochromic property and electrical conductivity were characterized by energy dispersive X-ray spectrometer (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experimental results show that differences exist among cycle stability, redox reversibility and response time of polyaniline films on these two kinds of substrates, but the electrochromic phenomenon of the PANI films is in substantial agreement. The equilibrium transmittance spectra in the visible region (400-800 nm) for the PANI film on flexible PET/ITO substrate was obtained at different applied potential from -0.4 to 1.5 V. The results show that the transmittance of the PANI film by applying voltage is adjustable in a row and has excellent electrochromic performance.
文摘Polyaniline (PANI) onto indium-doped tin-oxide (ITO)-coated glass samples were prepared by electroopolymerization in 0.5 M H<sub>2</sub>SO<sub>4</sub> solution. Structure and morphology characterization of the PANI films demonstrated that the films were grown onto ITO substrates in the form of polycrystalline microbelts separated by micropores. By analysing the UV-Vis absorption spectra of the PANI films, the energy bandgap was found to be approximately 2.75 eV. The PANI/ITO films exhibited a good reversible electrochromic display (ECD) performance when cycled in 0.1 M LiClO<sub>4</sub> + pro-pylene carbonate. The response time of the ECD coloration was found to be as small as 15 s and the coloration efficiency was found to be 8.85 cm<sup>2</sup> C<sup>-1</sup>. After 100 cycles of the ECD performance, the cyclic voltammetry curve of the working electrode maintained unchanged. This demonstrates that the electropolymerized PANI films can be served as a good candidate for ECD applications, taking advantage of their excellent properties in terms of chemical stability.