A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equati...A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.展开更多
Analytical investigation on a combined heat and mass transfer of air flow near a continuously moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic field. To observe the th...Analytical investigation on a combined heat and mass transfer of air flow near a continuously moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic field. To observe the thermal radiation and Soret effect on the flow, thermal radiation and thermal diffusion term are added in energy and concentration equations. A flow of model is established by employing the well known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. Perturbation technique is used as main tool for the analytical approach. The numerical values of flow variables are computed by a FORTRAN program. The obtain numerical values of fluid velocity, temperature and species concentration are drawn for the different values of various parameters. To observe the effects of various parameters on the flow variables, the results are discussed in detailed with the help of graph.展开更多
The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The g...The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.展开更多
The effects of chemical reactions in the hypersonic reacting flow are investigated using an integrated algorithm considering simultaneously two different reaction mechanisms,i.e.,including the high temperature air non...The effects of chemical reactions in the hypersonic reacting flow are investigated using an integrated algorithm considering simultaneously two different reaction mechanisms,i.e.,including the high temperature air nonequilibrium chemical reactions and the H_2-air combustion reactions. The program is validated by the air non-equilibrium flow at Mach number of 25.9 with the RAM C-II configuration and the shock-induced combustion flow at Mach number of 4.512 6 around a sphere,respectively. Furthermore,the mixed reacting flow with the Mach number of 10.0 with an opposing jet of hydrogen is numerically analyzed. The results show that the program is reliable,and the effects of chemical reactions engender in the decrease of peak temperature along characteristic lines,as well as on the surface. The production of water is augmented in the region with high ratio of oxygen to hydrogen and weakened in the area with low ratio of oxygen to hydrogen by the air chemical non-equilibrium effects.展开更多
In this work, the fundamental mechanism regarding the collision and pressure induced optic effect is elucidated. Based on the concept of the collision-relaxation/the pressure-release induced optic effect put forth her...In this work, the fundamental mechanism regarding the collision and pressure induced optic effect is elucidated. Based on the concept of the collision-relaxation/the pressure-release induced optic effect put forth here, a new laser technology may be developed. Furthermore, our work also makes the understanding the photon involved chemical reaction become much clear and rationalized.展开更多
文摘A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.
文摘Analytical investigation on a combined heat and mass transfer of air flow near a continuously moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic field. To observe the thermal radiation and Soret effect on the flow, thermal radiation and thermal diffusion term are added in energy and concentration equations. A flow of model is established by employing the well known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. Perturbation technique is used as main tool for the analytical approach. The numerical values of flow variables are computed by a FORTRAN program. The obtain numerical values of fluid velocity, temperature and species concentration are drawn for the different values of various parameters. To observe the effects of various parameters on the flow variables, the results are discussed in detailed with the help of graph.
文摘The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.
基金supported by the Fundamental Research Funds for the Central Universities (No. NZ2016101)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The effects of chemical reactions in the hypersonic reacting flow are investigated using an integrated algorithm considering simultaneously two different reaction mechanisms,i.e.,including the high temperature air nonequilibrium chemical reactions and the H_2-air combustion reactions. The program is validated by the air non-equilibrium flow at Mach number of 25.9 with the RAM C-II configuration and the shock-induced combustion flow at Mach number of 4.512 6 around a sphere,respectively. Furthermore,the mixed reacting flow with the Mach number of 10.0 with an opposing jet of hydrogen is numerically analyzed. The results show that the program is reliable,and the effects of chemical reactions engender in the decrease of peak temperature along characteristic lines,as well as on the surface. The production of water is augmented in the region with high ratio of oxygen to hydrogen and weakened in the area with low ratio of oxygen to hydrogen by the air chemical non-equilibrium effects.
文摘In this work, the fundamental mechanism regarding the collision and pressure induced optic effect is elucidated. Based on the concept of the collision-relaxation/the pressure-release induced optic effect put forth here, a new laser technology may be developed. Furthermore, our work also makes the understanding the photon involved chemical reaction become much clear and rationalized.