Due to the increasingly large size and changing nature of social networks, algorithms for dynamic networks have become an important part of modern day community detection. In this paper, we use a well-known static com...Due to the increasingly large size and changing nature of social networks, algorithms for dynamic networks have become an important part of modern day community detection. In this paper, we use a well-known static community detection algorithm and modify it to discover communities in dynamic networks. We have developed a dynamic community detection algorithm based on Speaker-Listener Label Propagation Algorithm (SLPA) called SLPA Dynamic (SLPAD). This algorithm, tested on two real dynamic networks, cuts down on the time that it would take SLPA to run, as well as produces similar, and in some cases better, communities. We compared SLPAD to SLPA, LabelRankT, and another algorithm we developed, Dynamic Structural Clustering Algorithm for Networks Overlapping (DSCAN-O), to further test its validity and ability to detect overlapping communities when compared to other community detection algorithms. SLPAD proves to be faster than all of these algorithms, as well as produces communities with just as high modularity for each network.展开更多
Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according...Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.展开更多
文摘Due to the increasingly large size and changing nature of social networks, algorithms for dynamic networks have become an important part of modern day community detection. In this paper, we use a well-known static community detection algorithm and modify it to discover communities in dynamic networks. We have developed a dynamic community detection algorithm based on Speaker-Listener Label Propagation Algorithm (SLPA) called SLPA Dynamic (SLPAD). This algorithm, tested on two real dynamic networks, cuts down on the time that it would take SLPA to run, as well as produces similar, and in some cases better, communities. We compared SLPAD to SLPA, LabelRankT, and another algorithm we developed, Dynamic Structural Clustering Algorithm for Networks Overlapping (DSCAN-O), to further test its validity and ability to detect overlapping communities when compared to other community detection algorithms. SLPAD proves to be faster than all of these algorithms, as well as produces communities with just as high modularity for each network.
文摘随着互联网的不断发展,大多数社会网络已逐渐显示出动态特性,动态社会网络社团分析对理解现实生活中社会网络结构和功能具有非常重要的意义.针对动态社会网络中的社团发现问题,提出一种基于隐Markov模型(hidden Markov model,HMM)的HMM_DC算法.该算法考虑到社会网络的动态特性,结合历史信息,将社团发现转化为求解隐马尔可夫模型中的最优状态序列问题,将网络中的社团结构和节点信息分别采用状态链和观察链表示,在无须指定额外参数的情况下实现动态网络的社团结构发现.最后,利用该算法和其他算法对VAST数据集、ENRON数据集和Facebook social network数据集进行实验仿真.仿真结果表明:该算法能够快速、准确地发现真实动态网络中的社团,其模块度Q值和互信息NMI值有很大提升.
基金supported by the National Natural Science Foundation of China(Grant No.61272279)the TianYuan Special Funds of the National Natural Science Foundation of China(Grant No.11326239)+1 种基金the Higher School Science and Technology Research Project of Inner Mongolia,China(Grant No.NJZY13119)the Inner Mongolia University of Technology,China(Grant No.ZD201221)
文摘Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.