After studying the characteristics and special texture of the fluidogenous tectonics, mineral assemblage in the cemented vein between breccia and their special distribution, and stress analyzing the joint structures i...After studying the characteristics and special texture of the fluidogenous tectonics, mineral assemblage in the cemented vein between breccia and their special distribution, and stress analyzing the joint structures in and around the breccia pipe, it is found that the observed phenomena are caused by a new tectonic dynamic mechanics of fluid——double-fracturing caused bytemperature and pressure of fluids and pulsating expansion. Under the actions of thermal stress and the pressure of fluids, thermal cracks and joints that developed along parts of the thermal cracks formed systematically in the rocks. Under these conditions, up-arching fracture zones that pulsatively expanded upward and cylindrical pressing breccia body were formed. Rocks at the peak of the pyramidal fractures zone break down instantly. Where the difference between pressure of fluids and the overburden pressure exceeded greatly the competence of the rocks, fluid junctions occurred and the velocity of the fluid flow increased as a result. Explosive body expanded upward in the shape of an inverse cone, cone-like explosive breccia body and cover-like shattering breccia body located on the upper part of the breccia pipe were ultimately formed. Gold-rich fluids were enriched and mineralized near the boiling surface in the lower part of the inverse cone-like explosive breccia body where temperature and pressure decreased rapidly, while copper-rich fluids were enriched and mineralized in the junction area where temperature and pressure were relatively high.展开更多
Double shoulder drill pipe joint(DSJ)is a novel thread structure which appears in recent years.Its strength reduced efficiently while the structure design is not appropriately,for the DSJ’s mechanical behaviors weren...Double shoulder drill pipe joint(DSJ)is a novel thread structure which appears in recent years.Its strength reduced efficiently while the structure design is not appropriately,for the DSJ’s mechanical behaviors weren’t well studied.In this paper a 3D whole structure finite element model of DSJ was established based on the Principle of Virtual Work,and validated the model’s computing results by experimental results.The authors analyzed the stress and strain distribution with the 3D whole structure finite element model’s computing results under torque moment,compression force,tension load,and bend moment.And then acquired the DSJ’s mechanical behaviors under each load.The research works of this paper refer accordance to recognize and design the DSJ.展开更多
To solve the problem of low efficiency in pipe routing design, an improved genetic algorithm based approach is proposed. To present this approach, the paper mainly describes a generation method of nodes considering th...To solve the problem of low efficiency in pipe routing design, an improved genetic algorithm based approach is proposed. To present this approach, the paper mainly describes a generation method of nodes considering the safety distance of pipes and the directional constraints at terminals, the definition of a double coding technique, the collision detection method, the concept of energy and the definition of fitness functions. The similarity detection is introduced to prevent close breeding in the crossover operator, the selection pressure is controlled according to the evolution situation and a heuristic mutation method is used to boost the evolution. Simulation case shows that this approach is more practical and can satisfy different design requirements by changing algorithm parameters.展开更多
文摘After studying the characteristics and special texture of the fluidogenous tectonics, mineral assemblage in the cemented vein between breccia and their special distribution, and stress analyzing the joint structures in and around the breccia pipe, it is found that the observed phenomena are caused by a new tectonic dynamic mechanics of fluid——double-fracturing caused bytemperature and pressure of fluids and pulsating expansion. Under the actions of thermal stress and the pressure of fluids, thermal cracks and joints that developed along parts of the thermal cracks formed systematically in the rocks. Under these conditions, up-arching fracture zones that pulsatively expanded upward and cylindrical pressing breccia body were formed. Rocks at the peak of the pyramidal fractures zone break down instantly. Where the difference between pressure of fluids and the overburden pressure exceeded greatly the competence of the rocks, fluid junctions occurred and the velocity of the fluid flow increased as a result. Explosive body expanded upward in the shape of an inverse cone, cone-like explosive breccia body and cover-like shattering breccia body located on the upper part of the breccia pipe were ultimately formed. Gold-rich fluids were enriched and mineralized near the boiling surface in the lower part of the inverse cone-like explosive breccia body where temperature and pressure decreased rapidly, while copper-rich fluids were enriched and mineralized in the junction area where temperature and pressure were relatively high.
基金This research is supported by Scientific Research Starting Project of SWPU(No.2017QHZ012)Major Project by Education Office of Sichuan Province(No.17ZA0418)+1 种基金supported by the Natural Science Fund for Outstanding Youth Science Fund(Grant No.51222406)Scientific Research Innovation Team Project of Sichuan Colleges and Universities(2017TD0014).
文摘Double shoulder drill pipe joint(DSJ)is a novel thread structure which appears in recent years.Its strength reduced efficiently while the structure design is not appropriately,for the DSJ’s mechanical behaviors weren’t well studied.In this paper a 3D whole structure finite element model of DSJ was established based on the Principle of Virtual Work,and validated the model’s computing results by experimental results.The authors analyzed the stress and strain distribution with the 3D whole structure finite element model’s computing results under torque moment,compression force,tension load,and bend moment.And then acquired the DSJ’s mechanical behaviors under each load.The research works of this paper refer accordance to recognize and design the DSJ.
基金Supported by National "863" Project of China (2006AA09A104)
文摘To solve the problem of low efficiency in pipe routing design, an improved genetic algorithm based approach is proposed. To present this approach, the paper mainly describes a generation method of nodes considering the safety distance of pipes and the directional constraints at terminals, the definition of a double coding technique, the collision detection method, the concept of energy and the definition of fitness functions. The similarity detection is introduced to prevent close breeding in the crossover operator, the selection pressure is controlled according to the evolution situation and a heuristic mutation method is used to boost the evolution. Simulation case shows that this approach is more practical and can satisfy different design requirements by changing algorithm parameters.