Pristine GeTe shows inferior thermoelectric performance around unit due to the large carrier concentration induced by the presence of intrinsic high concentration of Ge vacancy. In this study, we report a thermoelectr...Pristine GeTe shows inferior thermoelectric performance around unit due to the large carrier concentration induced by the presence of intrinsic high concentration of Ge vacancy. In this study, we report a thermoelectric figure of merit ZT of 1.56 at 700 K, realized in Sb-doped GeTe based thermoelectric(TE)materials via combined effect of suppression of intrinsic Ge vacancy and Sb doping. The nonequilibrium nature during melt spinning process plays very important role. For one thing, it promotes the homogeneity in Ge_(1-x)Sb_xTe samples and refines the grain size of the product. Moreover the persistent Ge precipitated as impurity phase in the traditional synthesis process is found to be dissolved back into the GeTe sublattice, accompanying with a drastic suppression of Ge vacancies concentration which in combination with Sb electron doping significantly reduced the inherent carrier concentration in GeTe.Low carrier concentration, approaching the optimum carrier concentration ~3.74 × 10^(-20) cm^(-3) and a high power factor of 4.01 × 10^(-3) W m^(-1)K^(-2) at 750 K are achieved for Ge_(0.98)Sb_(0.02) Te sample. In addition,the enhanced grain boundary phonon scattering by refining the grain size through melt spinning(MS)process, coupled with the intensified alloying phonon scattering via Sb doping leads to low thermal conductivity of 1.53 W m^(-1) K^(-1) at 700 K for Ge_(0.94) Sb_(0.06) Te sample. All those contribute to a high ZT value,representing over 50% improvement in the ZT value compared to the Sb free samples, which provides an alternative way for ultrafast synthesis of high performance GeTe based thermoelectric material.展开更多
Graphite materials are widely used as electrode materials for electrochemical energy storage.N-doping is an effective method for enhancing the electrochemical properties of graphite.A novel one-step N-doping method fo...Graphite materials are widely used as electrode materials for electrochemical energy storage.N-doping is an effective method for enhancing the electrochemical properties of graphite.A novel one-step N-doping method for complete and compact carbon paper was proposed for molten salt electrolysis in the Li Cl-KCl-Li3 N system.The results show that the degree of graphitization of carbon paper can be improved by the electrolysis of molten salts,especially at 2.0 V.Nitrogen gas was produced at the anode and nitrogen atoms can substitute carbon atoms of carbon paper at different sites to create nitrogen doping during the electrolysis process.The doping content of N in carbon paper is up to 13.0 wt%.There were three groups of nitrogen atoms,i.e.quaternary N(N-Q),pyrrolic N(N-5),and pyridinic N(N-6)in N-doping carbon paper.N-doping carbon paper as an Al-ion battery cathode shows strong charge-recharge properties.展开更多
Herein,a diatomite biomorphic Si-O doped carbon-based catalyst(DB-SiOC)was prepared using natura mineral diatomite as the silicon source and porous template.The results showed that the metal-free DB SiOC catalyst exhi...Herein,a diatomite biomorphic Si-O doped carbon-based catalyst(DB-SiOC)was prepared using natura mineral diatomite as the silicon source and porous template.The results showed that the metal-free DB SiOC catalyst exhibited ultrafast oxidation towards chlorophenol(CP)via peroxymonosulfate(PMS)activa tion,which was almost one order of magnitudes than most of carbon-based catalysts.The DB-SiOC/PMS system also showed the high ability to resist the interference of environmental matrix.The radicals(^(·)OH and SO_(4)^(·–))exhibited a very small contribution to the CP oxidation while the electron transfer processe(ETP)played the major role in the DB-SiOC/PMS system.The electron shuttles from the electron-donating CP molecules to the adjacent DB-SiOC/PMS^(*)could be efficiently triggered via Si-O bonds as bridges,mak ing it possible for ultrafast oxidation of CP.In addition,the hollow-disc shaped DB-Si OC provided the biomorphic DE structures with abundant pores for enriching the PMS and pollutants,thus further ac celerating the oxidation reaction.This work provided a new routine for the fabrication of Si-O doped carbon-based catalysts with excellent Fenton-like catalytic activity,which would greatly promote thei application prospects in Fenton-like systems.展开更多
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃...To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.展开更多
基金supported by the National Natural Science Foundation of China(51402222,51521001,and 51632006)the 111 Project of China(B07040)
文摘Pristine GeTe shows inferior thermoelectric performance around unit due to the large carrier concentration induced by the presence of intrinsic high concentration of Ge vacancy. In this study, we report a thermoelectric figure of merit ZT of 1.56 at 700 K, realized in Sb-doped GeTe based thermoelectric(TE)materials via combined effect of suppression of intrinsic Ge vacancy and Sb doping. The nonequilibrium nature during melt spinning process plays very important role. For one thing, it promotes the homogeneity in Ge_(1-x)Sb_xTe samples and refines the grain size of the product. Moreover the persistent Ge precipitated as impurity phase in the traditional synthesis process is found to be dissolved back into the GeTe sublattice, accompanying with a drastic suppression of Ge vacancies concentration which in combination with Sb electron doping significantly reduced the inherent carrier concentration in GeTe.Low carrier concentration, approaching the optimum carrier concentration ~3.74 × 10^(-20) cm^(-3) and a high power factor of 4.01 × 10^(-3) W m^(-1)K^(-2) at 750 K are achieved for Ge_(0.98)Sb_(0.02) Te sample. In addition,the enhanced grain boundary phonon scattering by refining the grain size through melt spinning(MS)process, coupled with the intensified alloying phonon scattering via Sb doping leads to low thermal conductivity of 1.53 W m^(-1) K^(-1) at 700 K for Ge_(0.94) Sb_(0.06) Te sample. All those contribute to a high ZT value,representing over 50% improvement in the ZT value compared to the Sb free samples, which provides an alternative way for ultrafast synthesis of high performance GeTe based thermoelectric material.
基金the National Natural Science Foundation of China(No.51725401)the Fundamental Research Funds for the Central Universities(No.FRT-TP-18-003C2)。
文摘Graphite materials are widely used as electrode materials for electrochemical energy storage.N-doping is an effective method for enhancing the electrochemical properties of graphite.A novel one-step N-doping method for complete and compact carbon paper was proposed for molten salt electrolysis in the Li Cl-KCl-Li3 N system.The results show that the degree of graphitization of carbon paper can be improved by the electrolysis of molten salts,especially at 2.0 V.Nitrogen gas was produced at the anode and nitrogen atoms can substitute carbon atoms of carbon paper at different sites to create nitrogen doping during the electrolysis process.The doping content of N in carbon paper is up to 13.0 wt%.There were three groups of nitrogen atoms,i.e.quaternary N(N-Q),pyrrolic N(N-5),and pyridinic N(N-6)in N-doping carbon paper.N-doping carbon paper as an Al-ion battery cathode shows strong charge-recharge properties.
基金supported by National Natural Science Foundation of China(No.52170086)Shandong Provincial Excellent Youth(No.ZR2022YQ47)。
文摘Herein,a diatomite biomorphic Si-O doped carbon-based catalyst(DB-SiOC)was prepared using natura mineral diatomite as the silicon source and porous template.The results showed that the metal-free DB SiOC catalyst exhibited ultrafast oxidation towards chlorophenol(CP)via peroxymonosulfate(PMS)activa tion,which was almost one order of magnitudes than most of carbon-based catalysts.The DB-SiOC/PMS system also showed the high ability to resist the interference of environmental matrix.The radicals(^(·)OH and SO_(4)^(·–))exhibited a very small contribution to the CP oxidation while the electron transfer processe(ETP)played the major role in the DB-SiOC/PMS system.The electron shuttles from the electron-donating CP molecules to the adjacent DB-SiOC/PMS^(*)could be efficiently triggered via Si-O bonds as bridges,mak ing it possible for ultrafast oxidation of CP.In addition,the hollow-disc shaped DB-Si OC provided the biomorphic DE structures with abundant pores for enriching the PMS and pollutants,thus further ac celerating the oxidation reaction.This work provided a new routine for the fabrication of Si-O doped carbon-based catalysts with excellent Fenton-like catalytic activity,which would greatly promote thei application prospects in Fenton-like systems.
基金financially supported by the Korea Institute of Energy Research(KIER)(grant no.C3-2401,2402,2403)the National Research Foundation(grant no.2022M3J1A1063019)funded by the Ministry of Science and ICT
文摘To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.