Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera...Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD...As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.展开更多
Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-di...Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-dimensional micropatterning techniques offer powerful tools to construct controllable and well-organized microenvironment for single-cell level investigations with qualitative analysis,cellular standardization,and in vivo environment mimicking.Here,we provide an overview of the basic principle and characteristics of the two most widely-used micropatterning techniques,including photolithographic micropatterning and soft lithography micropatterning.Moreover,we summarize the application of micropatterning technique in controlling cytoskeleton,cell migration,nucleus and gene expression,as well as intercellular communication.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
This paper presents a method to characterize asphalt pavement macrotexture using the gray-tone difference matrix (GTDM)and discusses the potentials of the GTDM indicators for skid resistance evaluation.There are 37 ...This paper presents a method to characterize asphalt pavement macrotexture using the gray-tone difference matrix (GTDM)and discusses the potentials of the GTDM indicators for skid resistance evaluation.There are 37 field sites included in the data collection,which cover 6 types of asphalt pavement surfaces. The mean profile depth derived from 3-D macrotexture measurements (MPD3 ) has a significant relationship with the mean texture depth (MTD ),which can be described by a logarithm model with R2 of 0.962.There is no significant linear relationship between the friction coefficient at a speed of 60 km/h (DFT60 )and macrotexture indicators.A nonlinear model with British pendulum number (BPN ) incorporated can relate DFT60 to MTD or indicator fcon .A comparison with MTD shows that GTDM-based fcon has a potential to be a macrotexture indicator for skid resistance evaluation,which describes the general height difference and the average local height difference of pavement macrotexture. A relatively high fcon is helpful for improving asphalt pavement skid resistance.展开更多
The events of cell death and the expression of nuclear matrix protein (NMP) have been investigated in a promyelocytic leukemic cell line HL-60 induced with etoposide. By means of TUNEL assay, the nuclei displayed a ch...The events of cell death and the expression of nuclear matrix protein (NMP) have been investigated in a promyelocytic leukemic cell line HL-60 induced with etoposide. By means of TUNEL assay, the nuclei displayed a characteristic morphology change, and the amount of apoptotic cells increased early and reached maximun about 39% after treatment with etoposide for 2 h. Nucleosomal DNA fragmentation was observed after treatment for 4 h. The morphological change of HL-60 cells, thus, occurred earlier than the appearance of DNA ladder. Total nuclear matrix proteins were analyzed by 2-dimensional gel electrophoresis. Differential expression of 59 nuclear matrix proteins was found in 4 h etoposide treated cells. Western blotting was then performed on three nuclear matrix acssociated proteins, PML, HSC70 and NuMA. The expression of the suppressor PML protein and heat shock protein HSC70 were significantly upregulated after etoposide treatment, while NuMA, a nuclear mitotic apparatus protein, was down regulated. These results demonstrate that significant biochemical alterations in nuclear matrix proteins take place during the apoptotic process.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
In situ and real-time monitoring of responsive drug release is critical for the assessment of pharmacodynamics in chemotherapy.In this study,a novel pH-responsive nanosystem is proposed for real-time monitoring of dru...In situ and real-time monitoring of responsive drug release is critical for the assessment of pharmacodynamics in chemotherapy.In this study,a novel pH-responsive nanosystem is proposed for real-time monitoring of drug release and chemo-phototherapy by surface-enhanced Raman spectroscopy(SERS).The Fe3O4@Au@Ag nanoparticles(NPs)deposited graphene oxide(GO)nanocomposites with a high SERS activity and stability are synthesized and labeled with a Raman reporter 4-mercaptophenylboronic acid(4-MPBA)to form SERS probes(GO-Fe3O4@Au@Ag-MPBA).Furthermore,doxorubicin(DOX)is attached to SERS probes through a pH-responsive linker boronic ester(GO-Fe3O4@Au@Ag-MPBA-DOX),accompanying the 4-MPBA signal change in SERS.After the entry into tumor,the breakage of boronic ester in the acidic environment gives rise to the release of DOX and the recovery of 4-MPBA SERS signal.Thus,the DOX dynamic release can be monitored by the real-time changes of 4-MPBA SERS spectra.Additionally,the strong T2 magnetic resonance(MR)signal and NIR photothermal transduction efficiency of the nanocomposites make it available for MR imaging and photothermal therapy(PTT).Altogether,this GO-Fe3O4@Au@Ag-MPBA-DOX can simultaneously fulfill the synergistic combination of cancer cell targeting,pH-sensitive drug release,SERS-traceable detection and MR imaging,endowing it great potential for SERS/MR imaging-guided efficient chemo-phototherapy on cancer treatment.展开更多
Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. A...Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.展开更多
Three-dimensional(3D)organoids derived from pluripotent or adult tissue stem cells seem to possess excellent potential for studying development and disease mechanisms alongside having a myriad of applications in regen...Three-dimensional(3D)organoids derived from pluripotent or adult tissue stem cells seem to possess excellent potential for studying development and disease mechanisms alongside having a myriad of applications in regenerative therapies.However,lack of precise architectures and large-scale tissue sizes are some of the key limitations of current organoid technologies.3D bioprinting of organoids has recently emerged to address some of these impediments.In this review,we discuss 3D bioprinting with respect to the use of bioinks and bioprinting methods and highlight recent studies that have shown success in bioprinting of stem cells and organoids.We also summarize the use of several vascularization strategies for the bioprinted organoids,that are critical for a complex tissue organization.To fully realize the translational applications of organoids in disease modeling and regenerative medicine,these areas in 3D bioprinting need to be appropriately harnessed and channelized.展开更多
The estimates of the high-dimensional volatility matrix based on high-frequency data play a pivotal role in many financial applications.However,most existing studies have been built on the sub-Gaussian and cross-secti...The estimates of the high-dimensional volatility matrix based on high-frequency data play a pivotal role in many financial applications.However,most existing studies have been built on the sub-Gaussian and cross-sectional independence assumptions of microstructure noise,which are typically violated in the financial markets.In this paper,the authors proposed a new robust volatility matrix estimator,with very mild assumptions on the cross-sectional dependence and tail behaviors of the noises,and demonstrated that it can achieve the optimal convergence rate n-1/4.Furthermore,the proposed model offered better explanatory and predictive powers by decomposing the estimator into low-rank and sparse components,using an appropriate regularization procedure.Simulation studies demonstrated that the proposed estimator outperforms its competitors under various dependence structures of microstructure noise.Additionally,an extensive analysis of the high-frequency data for stocks in the Shenzhen Stock Exchange of China demonstrated the practical effectiveness of the estimator.展开更多
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t...Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.展开更多
The development of pressure sensor arrays capable of distinguishing the shape and texture details of objects is of considerable interest in the emerging fields of smart robots,prostheses,human-machine interfaces,and a...The development of pressure sensor arrays capable of distinguishing the shape and texture details of objects is of considerable interest in the emerging fields of smart robots,prostheses,human-machine interfaces,and artificial intelligence(AI).Here we report an integrated pressure sensor array,by combining solution-processed two-dimensional(2D)MoS2 van der Waals(vdW)thin film transistor(TFT)active matrix and conductive micropyramidal pressure-sensitive rubber(PSR)electrodes made of polydimethylsiloxane/carbon nanotube composites,to achieve spatially revolved pressure mapping with excellent contrast and low power consumption.We demonstrate a 10×10 active matrix by using the 2D MoS2 vdW-TFTs with high on-off ratio>10^(6),minimal hysteresis,and excellent device-to-device uniformity.The combination of the vdW-TFT active matrix with the highly uniform micropyramidal PSR electrodes creates an integrated pressure sensing array for spatially resolved pressure mapping.This study demonstrates that the solution-processed 2D vdW-TFTs offer a solution for active-matrix control of pressure sensor arrays,and could be extended for other active-matrix arrays of electronic or optoelectronic devices.展开更多
基金supported in part by the National Natural Science Foundation of China (6177249391646114)+1 种基金Chongqing research program of technology innovation and application (cstc2017rgzn-zdyfX0020)in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
基金This research was financially supported by the National Natural Science Foundation of China(No.U2040210)the National Key R&D Program(Nos.2019YFC0408904,2019YFC0408901).
文摘As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.
基金supported by the National Natural Science Foundation of China(Nos.12174208,32227802)National Key Research and Development Program of China(No.2022YFC3400600)+3 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)China Postdoctoral Science Foundation(No.2020 M680032)Fundamental Research Funds for the Central Universities(Nos.2122021337,2122021405)the 111 Project(No.B23045).
文摘Cells are highly sensitive to their geometrical and mechanical microenvironment that directly regulate cell shape,cytoskeleton and organelle,as well as the nucleus morphology and genetic expression.The emerging two-dimensional micropatterning techniques offer powerful tools to construct controllable and well-organized microenvironment for single-cell level investigations with qualitative analysis,cellular standardization,and in vivo environment mimicking.Here,we provide an overview of the basic principle and characteristics of the two most widely-used micropatterning techniques,including photolithographic micropatterning and soft lithography micropatterning.Moreover,we summarize the application of micropatterning technique in controlling cytoskeleton,cell migration,nucleus and gene expression,as well as intercellular communication.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金The National Natural Science Foundation of China(No.50908004,51178013)
文摘This paper presents a method to characterize asphalt pavement macrotexture using the gray-tone difference matrix (GTDM)and discusses the potentials of the GTDM indicators for skid resistance evaluation.There are 37 field sites included in the data collection,which cover 6 types of asphalt pavement surfaces. The mean profile depth derived from 3-D macrotexture measurements (MPD3 ) has a significant relationship with the mean texture depth (MTD ),which can be described by a logarithm model with R2 of 0.962.There is no significant linear relationship between the friction coefficient at a speed of 60 km/h (DFT60 )and macrotexture indicators.A nonlinear model with British pendulum number (BPN ) incorporated can relate DFT60 to MTD or indicator fcon .A comparison with MTD shows that GTDM-based fcon has a potential to be a macrotexture indicator for skid resistance evaluation,which describes the general height difference and the average local height difference of pavement macrotexture. A relatively high fcon is helpful for improving asphalt pavement skid resistance.
文摘The events of cell death and the expression of nuclear matrix protein (NMP) have been investigated in a promyelocytic leukemic cell line HL-60 induced with etoposide. By means of TUNEL assay, the nuclei displayed a characteristic morphology change, and the amount of apoptotic cells increased early and reached maximun about 39% after treatment with etoposide for 2 h. Nucleosomal DNA fragmentation was observed after treatment for 4 h. The morphological change of HL-60 cells, thus, occurred earlier than the appearance of DNA ladder. Total nuclear matrix proteins were analyzed by 2-dimensional gel electrophoresis. Differential expression of 59 nuclear matrix proteins was found in 4 h etoposide treated cells. Western blotting was then performed on three nuclear matrix acssociated proteins, PML, HSC70 and NuMA. The expression of the suppressor PML protein and heat shock protein HSC70 were significantly upregulated after etoposide treatment, while NuMA, a nuclear mitotic apparatus protein, was down regulated. These results demonstrate that significant biochemical alterations in nuclear matrix proteins take place during the apoptotic process.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
基金supported by the National Natural Science Foundation of China(81872759 and 22177039)the National Key Research and Development Program of China(2021YFC2300400)+1 种基金Scien ceand Technology Program of Guangzhou(202102010097,China)Pearl River Talent Program(2017GC010363,China).
文摘In situ and real-time monitoring of responsive drug release is critical for the assessment of pharmacodynamics in chemotherapy.In this study,a novel pH-responsive nanosystem is proposed for real-time monitoring of drug release and chemo-phototherapy by surface-enhanced Raman spectroscopy(SERS).The Fe3O4@Au@Ag nanoparticles(NPs)deposited graphene oxide(GO)nanocomposites with a high SERS activity and stability are synthesized and labeled with a Raman reporter 4-mercaptophenylboronic acid(4-MPBA)to form SERS probes(GO-Fe3O4@Au@Ag-MPBA).Furthermore,doxorubicin(DOX)is attached to SERS probes through a pH-responsive linker boronic ester(GO-Fe3O4@Au@Ag-MPBA-DOX),accompanying the 4-MPBA signal change in SERS.After the entry into tumor,the breakage of boronic ester in the acidic environment gives rise to the release of DOX and the recovery of 4-MPBA SERS signal.Thus,the DOX dynamic release can be monitored by the real-time changes of 4-MPBA SERS spectra.Additionally,the strong T2 magnetic resonance(MR)signal and NIR photothermal transduction efficiency of the nanocomposites make it available for MR imaging and photothermal therapy(PTT).Altogether,this GO-Fe3O4@Au@Ag-MPBA-DOX can simultaneously fulfill the synergistic combination of cancer cell targeting,pH-sensitive drug release,SERS-traceable detection and MR imaging,endowing it great potential for SERS/MR imaging-guided efficient chemo-phototherapy on cancer treatment.
基金Project supported by the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594)the Science and Technology Project of Guangdong Province of China (Grant No. 2020B010190001)+1 种基金the National Key R&D Program of China (Grant No. 2018YFA0306200)the National Natural Science Foundation of China (Grant No. 11974119)。
文摘Atoms in the microscopic world are the basic building blocks of the macroscopic world. In this work, we construct an atomic-scale electromagnetic theory that bridges optics in the microscopic and macroscopic worlds. As the building block of the theory, we use the microscopic polarizability to describe the optical response of a single atom, solve the transport of electromagnetic wave through a single atomic layer under arbitrary incident angle and polarization of the light beam, construct the single atomic layer transfer matrix for light transport across the atomic layer. Based on this transfer matrix, we get the analytical form of the dispersion relation, refractive index, and transmission/reflection coefficient of the macroscopic medium. The developed theory can handle single-layer and few-layers of homogeneous and heterogeneous 2D materials, investigate homogeneous 2D materials with various vacancies or insertion atomic-layer defects, study compound 2D materials with a unit cell composed of several elements in both the lateral and parallel directions with respect to the light transport.
文摘Three-dimensional(3D)organoids derived from pluripotent or adult tissue stem cells seem to possess excellent potential for studying development and disease mechanisms alongside having a myriad of applications in regenerative therapies.However,lack of precise architectures and large-scale tissue sizes are some of the key limitations of current organoid technologies.3D bioprinting of organoids has recently emerged to address some of these impediments.In this review,we discuss 3D bioprinting with respect to the use of bioinks and bioprinting methods and highlight recent studies that have shown success in bioprinting of stem cells and organoids.We also summarize the use of several vascularization strategies for the bioprinted organoids,that are critical for a complex tissue organization.To fully realize the translational applications of organoids in disease modeling and regenerative medicine,these areas in 3D bioprinting need to be appropriately harnessed and channelized.
基金supported by the National Natural Science Foundation of China under Grant Nos.72271232,71873137the MOE Project of Key Research Institute of Humanities and Social Sciences under Grant No.22JJD110001+1 种基金the support of Public Computing CloudRenmin University of China。
文摘The estimates of the high-dimensional volatility matrix based on high-frequency data play a pivotal role in many financial applications.However,most existing studies have been built on the sub-Gaussian and cross-sectional independence assumptions of microstructure noise,which are typically violated in the financial markets.In this paper,the authors proposed a new robust volatility matrix estimator,with very mild assumptions on the cross-sectional dependence and tail behaviors of the noises,and demonstrated that it can achieve the optimal convergence rate n-1/4.Furthermore,the proposed model offered better explanatory and predictive powers by decomposing the estimator into low-rank and sparse components,using an appropriate regularization procedure.Simulation studies demonstrated that the proposed estimator outperforms its competitors under various dependence structures of microstructure noise.Additionally,an extensive analysis of the high-frequency data for stocks in the Shenzhen Stock Exchange of China demonstrated the practical effectiveness of the estimator.
基金financially supported by the National Natural Science Foundation of China(No.41573130)BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates(No.BNUXKJC1802)
文摘Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.
基金Y.H.acknowledges the financial support from the Office of Naval Research through award N00014-18-1-2491.X.F.D.acknowledged the support from the US Department of Energy,Office of Basic Energy Sciences,Division of Materials Science and Engineering through award DE-SC0018828(material preparation).
文摘The development of pressure sensor arrays capable of distinguishing the shape and texture details of objects is of considerable interest in the emerging fields of smart robots,prostheses,human-machine interfaces,and artificial intelligence(AI).Here we report an integrated pressure sensor array,by combining solution-processed two-dimensional(2D)MoS2 van der Waals(vdW)thin film transistor(TFT)active matrix and conductive micropyramidal pressure-sensitive rubber(PSR)electrodes made of polydimethylsiloxane/carbon nanotube composites,to achieve spatially revolved pressure mapping with excellent contrast and low power consumption.We demonstrate a 10×10 active matrix by using the 2D MoS2 vdW-TFTs with high on-off ratio>10^(6),minimal hysteresis,and excellent device-to-device uniformity.The combination of the vdW-TFT active matrix with the highly uniform micropyramidal PSR electrodes creates an integrated pressure sensing array for spatially resolved pressure mapping.This study demonstrates that the solution-processed 2D vdW-TFTs offer a solution for active-matrix control of pressure sensor arrays,and could be extended for other active-matrix arrays of electronic or optoelectronic devices.